| | | 1 | |--|---|--------| | | | | | | | | | | | 1 | | | | | | | | 1
1 | | | | | | | , | | | | | 1 | | | |
 | ł # RESULTS OF THE MAGNETIC AND METEOROLOGICAL OBSERVATIONS Made at the Abinger Magnetic Station, Surrey, and the Royal Observatory, Greenwich respectively for the year 1947 UNDER THE DIRECTION OF SIR HAROLD SPENCER JONES, Sc.D., F.R.S. ASTRONOMER ROYAL Published by Order of the Board of Admiralty in Obedience to Her Majesty's Command $\begin{array}{c} \textit{LONDON:} \\ \text{HER MAJESTY'S STATIONERY OFFICE} \\ \text{1956} \end{array}$ | | - | | | | | |--|---|--|--|--|--| | | • | ### CONTENTS | INTRODUCTION | | Page | |---|-----|-------| | PERSONAL ESTABLISHMENT AND ARRANGEMENTS | •• | 7 | | Magnetic Section | | | | GENERAL DESCRIPTION OF BUILDINGS AND INSTRUMENTS | •• | 7 | | REDUCTION AND ARRANGEMENT OF RESULTS | | хi | | Meteorological Section | | | | GENERAL | | xiv | | DESCRIPTION OF INSTRUMENTS | • • | xiv | | | •• | | | REDUCTION AND ARRANGEMENTS OF RESULTS | •• | xviii | | NOTATION AND SYMBOLS | •• | XX | | RESULTS OF OBSERVATIONS IN TABULAR ARRANGEMENT | | | | Magnetic | | | | TABLE I Hourly Means of Declination West for each day of the year | | D 8 | | TABLE II Hourly Means of Horizontal Component of Magnetic Intensity | •• | Dε | | TABLE III Hourly Means of Vertical Component of Magnetic Intensity | | D 14 | | TABLE IV Daily Mean and Extreme Values of Magnetic Elements | | | | recorded by the Magnetographs | •• | D 20 | | TABLE IV(A) Three-Hour-Range Indices "K" | •• | D 26 | | TABLE V Mean Diurnal Inequalities of the Magnetic Elements. All Days | •• | D 28 | | TABLE VI Mean Diurnal Inequalities of the Magnetic Elements. International Quiet Days | •• | D 30 | | TABLE VII Mean Diurnal Inequalities of the Magnetic Elements. International Disturbed Days | | D 32 | | TABLE VIII, IX Harmonic Components of the Diurnal Inequality of Magnetic Intensit | ty | D 34 | | TABLE X Range of Diurnal Inequalities for the Months, Years and Seasons | | D 35 | | TABLE XI Monthly and Annual Value of Non-Cyclic Change in the Magnetic Elements | | D 35 | | TABLE XII Mean Monthly and Annual Values of Magnetic Elements | | D 35 | | TABLE XIII Daily Mean Value of the Base-Line of the Declination Magnetograms | | D 36 | | MAG | SNETIC - continued. | Page | |------|---|-----------| | | TABLE XIV Absolute Observations of Horizontal Intensity with the Schuster-Smith Coil Magnetometer; and Deduced Values of the Base-Line of the Horizontal Intensity Magnetograms | D3' | | | TABLE XV Absolute Observations of Vertical Intensity with the Dye Coil Magnetometer and Deduced Values of the Base-Line of the Vertical Intensity Magnetograms | r;
D39 | | | TABLE XV(A) Daily Value of the Base-Line of the Vertical Intensity Magnetograms deduced from Observations of Dip with the Earth Inductor | . D 4. | | | TABLE XVI(A) Magnetic Elements Determined at Greenwich between 1818-1925 | . D 42 | | | TABLE XVI(B) Magnetic Elements Determined at Greenwich between 1925-1947 | . D 43 | | | Notes on Magnetic Activity | . D 44 | | | PLATES I - VI Photo-lithographed from tracings of the Photographic Registers of Magnetic Disturbances. (Following D 50). | | | le T | EOROLOGICAL | | | | TABLE XVII Daily Results of the Meteorological Observations | . D 58 | | | TABLE XVIII(A) Highest and Lowest Readings of the Barometer | . D 82 | | | TABLE XVIII(B) Highest and Lowest Readings of the Barometer for each Month | . D 82 | | | TABLE XIX Monthly Results of Meteorological Elements | . D 83 | | | TABLE XX Monthly Mean Readings of the Barometer at every Hour of the Day | . D 84 | | | TABLE XXI Monthly Mean Temperature of the Air at every Hour of the Day | . D 84 | | | TABLE XXII Monthly Mean Temperature of Evaporation at every Hour of the Day | . D 85 | | | TABLE XXIII Monthly Mean Temperature of the Dew-Point at every Hour of the Day . | . D 85 | | | TABLE XXIV Monthly Mean Degree of Humidity at every Hour of the Day | . D 86 | | | TABLE XXV Total Amount of Sunshine registered in each Hour of the Day in each Month | D 86 | | | TABLE XXVI Readings of Thermometers in the Stevenson Screen in the Christie Enclosu | re D 87 | | | TABLE XXVII Readings of Thermometers of the Revolving Stand in the Christie Enclosu | re D 90 | | | TABLE XXVIII Amount of Rain collected in each Month by Gauges No.6 and No.8 | . D 90 | | | TABLE XXIX Mean Hourly Measures of the Horizontal Movement of the Air in each Month and Greatest Hourly Measures as Derived from the Records of Robinson's Anemometer | ,
D 91 | ### THE ROYAL OBSERVATORY, GREENWICH, AND ABINGER MAGNETIC STATION, SURREY. ### MAGNETIC AND METEOROLOGICAL OBSERVATIONS, 1947. ### INTRODUCTION ### STAFF During the year 1947 the staff serving in the Magnetic and Meteorological Department consisted of W. M. Witchell, Superintendent, E. A. Chamberlain, W. Jackson, G. F. Wells, P. L. Rickerby, B. R. Leaton and Miss J. Mounteney. Mr. Chamberlain, resident observer and assistant-in-charge, and his assistant Mr. Rickerby, were employed exclusively at the Abinger Magnetic Station. ### ABINGER MAGNETIC OBSERVATIONS THE MAGNETIC STATION - Site (Lat. 51° ll' 5" N; Long. 0° 23′ l2" W). Established in 1924, the station is situated on the northern slope of Leith Hill, Surrey, 800 feet above sea level. It is approximately 26 miles from the former site at Greenwich in a direction a little south of south-west. The nearest railway track lies at a distance of about $2\frac{1}{2}$ miles. The Pavilions. The absolute observations are made in the main pavilion which is constructed of carefully chosen non-magnetic materials. It is approximately 28 feet long by 15 feet wide and contains four stoutly built hard wood piers embedded into concrete bases which are free from contact with the floor. On the north pier is mounted the declination instrument; on the central pier, the coil magnetometer for measuring horizontal intensity; on the south-east pier, the coil magnetometer for measuring vertical intensity; and on the south-west pier, the Earth-inductor for observing magnetic inclination. A second pavilion, erected in 1926 for the testing and standardising of magnetic instruments (work formerly undertaken at Kew Observatory), and measuring 16 feet by 12 feet, is situated about 40 feet south-east of the main pavilion and contains three concrete piers passing through the floor without contact. A third pavilion measuring 20 feet square was added in 1932. More convenient and suitable for comparative observations then the second, this pavilion occupies a corresponding position to the north-east of the main pavilion. It contains three circular wooden piers set into concrete and free from contact with the floor, similar to those in the main pavilion. The Magnetograph House stands 50 feet east of the main pavilion and is oriented with its principal axis north and south. An inner chamber, designed to house the magnetographs at a uniform temperature, measures 15 feet long by 12 feet wide by 8 feet high and is supported on small concrete piers. The whole structure is contained within an outer chamber whose walls are constructed to have a low thermal conductivity and are nearly two feet thick. Between the walls of the two chambers is an air space of from 2 to 3 feet. The inner chamber is electrically heated by a series of low-temperature non-magnetic metallic resistances distributed along the base of the walls and fed by alternating current drawn from the public mains supply. The temperature of the magnetograph chamber is controlled by a thermostat placed at the centre of the room at the same level as the magnetic instruments. Daily readings of a thermometer attached to one of the variometers show that the departures from a mean temperature do not exceed 0°.2 C. Projecting up through the floor are five concrete piers. Two of these, designed originally to support recording mechanisms, occupy the north-west and south-east corners of the room, their longer sides being transverse to the meridian. In 1938 a massive slate slab measuring 8 feet by 2 feet by l_{4}^{1} inches was cemented upon the pier occupying the south-east corner. The other three piers are situated at positions 2 feet west and 2 feet 6 inches south of the north-east corner; 5 feet 6 inches west and 5 feet south of the same corner, and 2 feet east and 3 feet north of the south-west corner. Also, in 1938 a heavy wooden table 8 feet by 3 feet was installed near the centre of the room to carry new recording mechanism. The legs of this table pass freely through the floor of the chamber and are cemented into the concrete base of the main building. LAYOUT OF RECORDING INSTRUMENTS. At the beginning of March 1938 the apparatus used since 1925 to record D and H was superseded by La Cour variometers. These instruments are set up at the south end of the recording chamber in a line running geographically east and west. They occupy the eastern half of the slate slab previously described. The La Cour recording mechanism is mounted upon the table also referred to in the previous paragraph. Occupying the western halves of the slate slab and wooden table is a "quick-run" magnetograph (see p. vii). On the opposite corner pier is mounted the recording mechanism of a wide-range magnetograph, the declinometer of which is carried by the same pier (see p. vii). The accompanying H variometer is mounted on the south-west pier, formerly occupied by the Watson quartz-fibre Z variometer. VARIOMETERS - The La Cour Horizontal Intensity Variometer. A complete description of this instrument is to be found in
Publikationer fra det Danske Meteorologiske Institut, No.11 (Copenhagen 1930), but for general information some details are given here. The magnet of cobalt steel is 8 millimetres long and weighs about 25 milligrams, the magnetic moment being 3.2 c.g.s. units. It is suspended at right angles to the Earth's horizontal field by means of a quartz fibre thickened at each end to form a small cone. Each cone fits into a conical brass socket having a fine slit in its side through which the fibre has passed. The focal length of the lens which projects the ray from the mirror attached to the magnet is 160 cms. Compensation for the effect of temperature on the moment of the magnet and the torsional constant of the quartz fibre is attained by optical means in which compensatory deflection of the emergent ray is produced by proportional curving (under temperature changes) of a bi-metallic lamina which supports a prism controlling the ultimate direction of the ray. A small Helmholtz-Gaugain coil, having a field of 7.43 gamma per milliampere and made to envelop the variometer, is used both to orientate the magnet correctly with respect to the earth's field and to determine the scale-value of the record. The orientation of the magnet was last examined on 1947 December 2 and was then correct within 0°.6. The adopted scale-value during 1947 was 4.35 gamma per millimetre. The La Cour Declination Variometer. The general features of this instrument correspond closely to those of the variometer just described. The scale-value adopted during 1947 was 0'.92 per millimetre. Expressed as magnetic intensity the scale-value would be 4.97 gamma per millimetre at the present time. The La Cour Vertical Intensity Variometer. This instrument is fully described in Publikationer fra det Danske Meteorologiske Institut No.8. The recording magnet, including knife-edges and mirror, is fashioned from a single piece of cobalt steel, with the purpose of eliminating the possibility of relative movements among its parts. It is oriented approximately at right-angles to the magnetic meridian. Compensation for temperature changes is optically effected as in the horizontal intensity variometer. The scale-value, determined by the small Helmholtz-Gaugain coil already mentioned, is 4.35 gamma per millimetre. The Quick-run Variometers. These consist of a set of instruments closely resembling those described above and adapted by La Cour's method to record on a time scale of 3 mm. to one minute, i.e. twelve times as great as the normal scale. This recorder has been in regular use since 1938 November. The Wide-range Variometers. Instruments formerly serving as standard variometers for Hand D have been adapted to serve as wide-range recorders capable of registering on a small scale the largest variations in the two elements deemed possible of occurrence at Abinger. The H variometer, which was superseded as the standard by the La Cour recorder, has been "desensitised" by the addition, immediately beneath its base-plate, of a bundle of strongly magnetised needles set at right-angles to the magnetic meridian. The scale-value is 19.5 gamma per millimetre. The D variometer used at Greenwich from 1917 to 1925 is now fitted with a lens of 50 cms. focal length, which gives a scale-value of 3'.7 per millimetre. The two instruments are located as described on p. vi. The present position of the D variometer is such that it is necessary to deflect the recording light rays towards the recording cylinder through a large angle, and an appropriate mirror rigidly supported between the variometer and cylinder forms part of the apparatus. The wide-range variometers have been in regular operation since 1940. Recording Mechanism. The two principal features of the La Cour recorders are: the three elements H, D and Z are recorded on separate strips of a single photographic sheet; the range over which the elements are able to record is greatly extended by the use of prisms in the optical train which furnish a multiple set of images. For each element are formed six secondary images, three on each side of the principal image, the separation being so adjusted that the image from one prism appears at the edge of the record just before the adjacent image passes off the opposite edge. The time-scale is approximately 15 mm. to the hour. The time-marks are in all cases photographically printed on the sheets by momentary automatic illumination of an electric lamp. In the case of the La Cour magnetograph the original arrangement provides a series of small dots which con- stitutes a second, interrupted, trace of the element. These marks, however, have been supplemented by thin time lines extending the whole width of each record, these lines being produced by adjustable long narrow mirrors which reflect light from an auxiliary time signal lamp. In the case of the "quick-run" and "wide-range" recorders, only the thin lines are printed. The time-signals are derived from a relay connected to a mean solar clock in the computing room. For a period of one second at every tenth minute of Universal Time the clock operates a relay which in turn operates the lamps. Additional signals at the first and fifty-ninth minute of each hour serve to distinguish the hour signals. The error of the clock is observed daily by comparison with a time-signal radiating from one of the official broadcasting stations. The error, which seldom exceeds one second, is eliminated by temporarily adjusting the clock rate electromagnetically over the required period of a minute or two. OBSERVING INSTRUMENTS - Declinometer. A hollow cylindrical magnet with scale and collimating lens is used in conjunction with a small telescope mounted independently on the same pier. The magnet is suspended by tungsten wire of diameter 0.02 mm. Frequent reversals are made to eliminate the collimation error of the magnet from the results, and the position of torsional zero of the suspension wire is also frequently checked. 90° of torsion deflects the magnet about 3′. The telescope has a six-inch circle on which azimuths are read by means of two microscope-micrometers to 1″. An azimuth mark is fixed on the top of a concrete pillar 10 feet high, erected at the northern extremity of the Observatory grounds at a distance of approximately 300 feet from the observing pier. Determinations of the azimuth of this mark are made at intervals by means of observations of Polaris. During each observation both direct and reflected views of the star are taken. The effect of error of level of the telescope is thus entirely eliminated. Reflection is obtained from the surface of mercury contained in a shallow copper dish. The Schuster-Smith Coil Magnetometer. This instrument is on loan to the Observatory from the National Physical Laboratory. It is the second of the type constructed and is rather smaller than the original instrument, a detailed description of which is to be found in Philosophical Transactions of the Royal Society, Vol. 223 (1923), pp.175-200. It is erected on a pier in the centre of the absolute observation pavilion and was brought into use as the standard instrument for measurement of horizontal intensity on 1927 February 1. In general eight independent determinations are made each week-day. The following is a brief description of the instrument and the method employed in measuring horizontal intensity:- A hollow marble cylinder of 50 cms. diameter rests, with its axis horizontal, on a brass support which can be turned in azimuth. The azimuth may be read to 10" from a graduated circle on the base-plate by the usual vernier attachment. On the periphery of the cylinder, near each end and at a mean distance of 25 cms. from each other, are two windings, in series, of ten turns of bare silver wire, the method of winding in a double spiral being that adopted in the original instrument referred to above. The whole forms a Helmholtz-Gaugain system at the centre of which a very uniform magnetic field parallel to the axis exists when an electric current is passing through the coils. A chromium-steel magnet, 15 mm. long and 2 mm. square in cross section, is supported horizontally in a light vertical aluminium frame; the frame carries also a small concave mirror and a damping vane and is suspended by a single silk fibre in a suspension tube passing through a hole in the upper surface of the cylinder. A square box with optically-plane glass sides supports the tube and encloses the magnet frame, allowing the mirror to project an image of a source of light during observation. The suspension fibre is adjusted so that the magnet hangs at the centre of the coil system. To afford an easy means of reading the azimuth of the cylinder and the indications of the magnet, graduated ivorine scales are placed horizontally on stands at a distance of approximately 2 metres from the pier, and spots of light are reflected to them by small concave mirrors in the instrument. Situated outside the observing pavilion, about 40 feet to the south, is a storage battery of 25 cells which produces the current required for the observation. The amount of current employed is very accurately adjusted to a specific quantity by rheostat according to the indications of a Broca galvanometer in a potentiometer circuit in which the fall of potential across a known resistance is brought to equality with the voltage of a Weston standard cell. Careful precaution is exercised in arranging the circuits both to eliminate accidental magnetic fields and to secure the highest degree of insulation. The latter has been found, in practice, to be of great importance, especially with regard to insulation of the galvanometer circuit, as any stray current here will lead to a difference of potential between the terminals of the standard cell and the standard resistance. It is desirable that the resistance of the galvanometer should be as low as possible consistent with sensitivity. Theory of the observation:- If a
horizontal magnetic field whose intensity is slightly greater than that of the earth is imposed at an angle of nearly 180° with the earth's field, a precise angle can be found at which the resultant of the two fields becomes directed at right angles to the earth's field. The intensity F of the imposed field, and its angle α with the earth's field being known, the horizontal intensity of the earth's field can then be calculated from the simple relation F cos G. An observation proceeds as follows:- Torsion having been eliminated from the suspension thread by substituting a copper bar of similar dimensions for the magnet, the magnet is replaced and allowed to hang freely in the earth's field. The position on the appropriate scale of the spot of light reflected by the magnet-mirror is noted. This scale is normally on the west side of the instrument. By optical methods, reference marks on two other scales placed respectively to the magnetic north and south of the instrument are adjusted accurately to points 90° from the spot reflected by the magnet mirror. A current is next passed round the coil in the direction which produces a field augmenting that of the earth, and the coil is turned in azimuth until the addition of the imposed field produces no alteration in the direction of the magnet. The axis of the coil is then accurately parallel to the horizontal component of the earth's field, and the coil-mirror can be adjusted so that it reflects a spot of light to the reference mark, i.e. to the zero graduation of the north scale as already set. The current is now reversed in the coil by a commutator switch and the coil is turned until the resultant force on the magnet is in a direction at right angles to the earth's field. This is indicated on either the north or south scale by the magnet-mirror, which is carried round 90° by the magnet. The azimuthal angle through which the coil has been turned is read from the north scale, and the coil is then turned to an approximately equal angle on the opposite side of the magnetic meridian. This reverses the direction of the resultant field and a further small adjustment of the coil brings the spot of light reflected by the magnet-mirror accurately to the reference mark on the opposite scale to that last used. A second reading of the aximuth of the coil completes the observation. The suspension box and tube are turned by the observer as the magnet turns, so that no torsional change is introduced. The effect of any small error in the assumed direction of the Earth's horizontal field, due, say, to residual torsion on the suspension thread, is eliminated on taking the mean of the two results. After preliminary details have been gone over, a complete measurement of horizontal intensity is readily obtained in two minutes. If F be the factor of the coil and i be the current passing, in amperes, then the intensity of the field at the centre of the coil, in gamma units, is $Fi \times 10^4$. The adopted value of the factor F of the coil is 3.59570 (1-.0000043t), t being temperature Celsius. The observed value of horizontal intensity obtained from this instrument is subject to a correction of -l γ for the effect of the field of magnets in instruments placed permanently in the vicinity. The effect is determined experimentally by reversal of the magnets. The correction is applied in the reduction of the observation. The constants of the coil and of the potentiometer at various standard temperatures have been precisely determined at the National Physical Laboratory and are checked from time to time. The dimensions of the coil were re-examined in November 1931. The electrical constants on which the reduction of observations made in 1947 is based were verified in June 1947. To convert the measure of current from international units to c.g.s. units the factor adopted prior to 1938 January 1 was .99997; but from this date onward the value adopted has been .99988. The change introduces a discontinuity into the deduced values of H of -1.7γ . The Vertical Intensity Coil Magnetometer. This instrument, designed by D. W. Dye for direct measurement of vertical intensity and constructed under his supervision at the National Physical Laboratory, Teddington, is on loan to the Royal Observatory from the Laboratory. It is erected on the south-east pier of the observing pavilion and was adopted as the standard for measurement of vertical intensity from 1929 January 1. A full description of the instrument is published in *Proceedings of the Royal Society*, Ser.A, Vol.117 (1928), pp.434-458. In brief, the instrument consists of a Helmholtz-Gaugain coil wound on a marble cylinder, the axis of which is vertical as truly as can be determined, together with accessory apparatus for accurately controlling and measuring the current passed through the coil, and for testing the resultant field at its centre. The observation consists of an adjustment of the current until the artificial field imposed at the centre of the coil exactly annuls the vertical component of the earth's field. The intensity of this component is then easily calculable from a knowledge of the dimensions of the coil and the amount of current indicated by potentiometer measurement $(cf\ p.\ x)$. The current is taken from the battery which supplies the Schuster-Smith instrument. The special feature of the instrument is the means adopted for ascertaining when the vertical component of the Earth's field is exactly annulled at the centre of the marble cylinder. This consists of a diamond-shaped vibrating test-coil about 2 cms. long suspended by bronze strip stretched horizontally between two supports and carrying a light plane mirror. The principle of the instrument requires that the axis of rotation of the detector coil should be horizontal and its plane vertical in the equilibrium position. The method of securing these adjustments is included in the full description mentioned above. A weak alternating current, supplied from a generator at some distance from the instrument, passes through the test-coil. The reaction between the field produced and the surrounding magnetic field subjects the test-coil to a forced oscillation which vanishes only when the vertical field is annulled. The resulting vibration is brought to a maximum by adjustment of the generator frequency to synchronism with the natural frequency of the coil (about 15 per second) and high sensitivity is thus obtained. Microscopic vibration is exhibited by projection from the small mirror on the test-coil of an image of illuminated cross-wires to a screen erected about 2 metres distant. The adopted value of the factor F of the coil is F = 3.59643 (1-.0000079t), t being temperature Celsius. The constants of the potentiometer in use during the year 1947 for the measurement of the current were verified at the National Physical Laboratory in June 1947. The factor adopted for the conversion from international units to c.g.s. units was the same as for the Schuster-Smith coil (see p. x). The change on 1938 January 1 introduces a discontinuity of -3.9 γ into the deduced values of Z. The Absolute Inclination Instrument. An Earth Inductor by the Cambridge Instrument Company, in conjunction with a Broca galvanometer, is used to determine magnetic inclination. About six determinations are made each week. Observations are made in four positions to eliminate any small errors arising from slight asymmetry in the instrument. After the first adjustment the coil support is reversed about a horizontal axis and a second adjustment is obtained; the instrument is then reversed in aximuth and two further adjustments are made. The circle for the measurement of inclination is 8 inches in diameter and is read by means of microscope-micrometers to one second of arc. The levels on the base can likewise be read to one second. A detailed description of the inductor will be found in the volume for 1915. Since 1929 January 1 the observations of inclination have not been used for determination of vertical intensity. REDUCTION OF RESULTS - Time - The system of time used in the reductions is $Universal\ Time\ (U.T.)$. Hourly Values. The estimated mean ordinates of the photographic traces for each hour are measured from the base-line by the aid of an etched glass scale - the hour being the period of sixty minutes commencing at the time named in the tables. From the tables of these measures are obtained the mean daily and mean monthly values for each hour of the day and the value of the elements for each day of the month. Base-lines. Values of the base-lines are adopted from smooth curves drawn through points plotted upon charts, each point representing the mean of several independently observed values. Ten observations of declination, eight of horizontal intensity and six of vertical intensity are made, on an average, each week-day. Prior to 1929 the base-line values for vertical intensity traces were computed from absolute observations of inclination I, combined with simultaneous values of horizontal intensity H, taken from the magnetograms, in accordance with the relation Z = H tan I. From 1929 January 1 the values have been obtained directly from observations of vertical intensity with the coil-magnetometer. The change introduces a discontinuity of about 30γ into the definitive values of vertical intensity, corresponding to 0'.9 in inclination. The latter is to be attributed to hitherto unsuspected wear in the bearings of the Earth inductor which, at the time of its discovery, made the observed values of inclination too large by this amount. Temperature Corrections. As the magnetograph chamber is maintained at a sensibly constant temperature and, moreover, the temperature compensation in the variometers themselves has been closely attained, in general no temperature corrections are required. K- Indices. In conformity with a resolution passed at the Washington Assembly of the
International Association of Terrestrial Magnetism and Electricity in 1939 September, the magnetic character of each day is estimated by means of three-hour-range indices, the index "K" for each three-hour period from Ch to 24h U.T. being assigned according to the principles described in an article published in Terrestrial Magnetism and Atmospheric Electricity, Vol. 44, pp. 411 et seq (December 1939). The scale adopted for this purpose is constructed as follows:- The average quiet day variation during a particular three-hour period being reckoned as "O", any excess greater than 5 γ but less than 10 γ is reckoned as "1"; an excess between 10 γ and 20 γ as "2"; between 20 γ and 40 γ as "3"; between 40 γ and 70 γ as "4"; between 70 γ and 120 γ as "5"; between 120 γ and 200 γ as "6"; between 200 γ and 330 γ as "7"; between 330 γ and 500 γ as "8"; greater than 500 γ as "9". The traces of all three elements are examined and the largest variation recorded in the interval is used to give the "K" index for that interval. THE TABLES. Tables I to III contain respectively the hourly mean values of declination, horizontal intensity and vertical intensity. Table IV gives for each element the mean daily value, the maximum and minimum values with the times of their occurrence and the daily range. Table IVA contains, for each day of the year, the eight individual K-indices, arranged in succession, together with their sums. Tables V to VII contain the mean diurnal inequalities obtained from "All" days and from "Quiet" and "Disturbed" days as selected by the International Committee. In addition to monthly and annual values there are given values for the seasons, viz. Winter (January, February, November, December), Equinox (March, April, September, October) and Summer (May, June, July, August). The values in these tables are not adjusted for the effect of non-cyclic change. The figures quoted for the north and west components and the inclination are computed from the corresponding inequalities in declination, horizontal intensity and vertical intensity, the computations being in general carried out to one significant figure beyond that printed. Extreme values are indicated in heavy type. Tables VIII and IX contain the harmonic coefficients obtained from an analysis of the inequalities in the north (X), west (-Y) and vertical (Z) components. In the case of the International Quiet and Disturbed days, the inequalities are adjusted for non-cyclic change before analysis, tut in analysing the results for "All" days the non-cyclic change is ignored. The phase-angles in Table IX are corrected to refer to Abinger Local Mean Time. Table X. In the annual volumes from 1926-1931 this table contains the range of the mean diurnal inequalities abstracted from the figures given in Tables V to VII for the months, the year and the seasons. In 1932 a change was made which was inadvertently not noted at the time. Thenceforth the figures given for the year and the seasons are derived from Table X itself by meaning the values of the months constituting the particular group. Table XI gives in similar arrangement the non-cyclic change $24^{\rm h}$ minus $0^{\rm h}$. The quantities are computed from Tables I to III, the value of $0^{\rm h}$ or $24^{\rm h}$ being taken as the mean of the last value on one day and the first value on the day following. Table XII contains the mean monthly and annual values of the components collected together. In forming this table corrections are applied when necessary, to the values of H and Z taken from Table IV to remove the effect of any small secular changes in potentiometer constants found at the periodical re-measurement of the constants at the National Physical Laboratory. Tatles XIII to XVA contain the daily values of the base-lines of the magnetograms reduced from the absolute observations. Table XVI. The first part of this table contains mean annual values of magnetic elements determined at the Royal Observatory, Greenwich, over the whole period of observation. Included in the table are results of early observations of declination made from 1818 to 1820. The second part contains corresponding values determined at the Abinger Station since 1925. REPRODUCTION OF MAGNETOGRAMS. A brief descriptive summary of the more significant movements recorded in the magnetic elements during the year is accompanied by reduced copies of the Abinger Magnetograms illustrating disturbances of special interest. GENERAL. The majority of the meteorological instruments are situated in an enclosure in Greenwich Park, 350 yards to the east of the Astronomical Observatory. In the enclosure (which will be referred to as "The Christie Enclosure") there are the barometer, the thermometers used for ordinary eye observations, the recording wet-bulb and dry-bulb thermometers, thermometers for solar and terrestrial radiation, two earth thermometers and two rain gauges; also the instrument for automatically recording pollution of the air. The anemometers, the self-registering rain gauge and the sunshine recorder are fixed above the roof of the Octagon Room (the ancient part of the Observatory). The observations comprise eye observations of the ordinary meteorological instruments, including the barometer, dry-bulb and wet-bulb thermometers, radiation and earth thermometers; continuous autographic record of the variations of the barometer, dry-bulb and wet-bulb thermometers; continuous automatic record of the direction, pressure and velocity of the wind and of the amount of rain; registration of the duration of sunshine and at night of the visibility of stars near the celestial Pole; the general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud and estimations of "visibility"; registration and measurement of the pollution of the air by solid matter. Universal Time (U.T.) - which at the Royal Observatory coincides with local Mean Solar Time - has been employed throughout the meteorological section, except in regard to the sunshine registers (see p. xvii). INSTRUMENTS. Standard Barometer. The standard barometer is Newman No.64. Its tube is 0.565 inch in diameter, and the depression of the mercury due to capillary action is 0.002 inch, but no correction is applied on this account. The cistern is of glass and the graduated scale and attached rod are of brass. At its lower end the rod terminates in a point of ivory which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to 0.05 inch, sub-divided by vernier to 0.002 inch. The barometer was mounted in 1840 on the southern wall of the western arm of the Upper Magnet Room at a height above mean sea level of 159 feet. On 1917 April 3 it was transferred to the new magnetograph house in the Christie Enclosure, where the height above mean sea level is 152 feet (see also p. xviii). The barometer is read at 9^h , 12^h (noon) and 15^h every day. Each reading is corrected by application of an index-correction and reduced to the temperature 32° F. The readings thus found are used to determine the value of the instrumental base-line on the photographic record. The Photographic Barometer. A siphon barometer is employed which, at its open end, operates a plunger resting on the surface of the mercury. On account of the optical magnification associated with a moving mirror at some distance from the recording drum, the motion of the plunger must be mechanically reduced in being transferred to the arm which carries the mirror. In the actual arrangement two levers are used. One is connected to the stem of the plunger resting on the free surface of the mercury and is 12 inches long from plunger to pivot. A pin with a rounded conical point is screwed into this lever at a distance of 1 inch from the pivot. On this pin rests the plane under-surface of a shorter lever, which is 4 inches long from its pivot to the pin and is set at right angles to the first lever. Both levers are approximately horizontal in their mean position. The moving mirror of the instrument is mounted horizontally, in a suitable frame, just above the pivots of, and attached to the short lever. The first lever lies east and west, so that the axis about which the mirror turns is in the same direction. The recording drum is horizontal and the motion of the beam of light is transformed, so as to be horizontal, by a fixed right-angled prism supported above the mirror. A lens of suitable focus is mounted in a vertical plane in front of the prism and brings the beam of light from the straight-filament electric lamp to a focus on the drum. A base-line mirror, similar to the moving mirror, is mounted in a vertical plane below the lower half of this lens. Provision is made for all the necessary adjustments of the directions of the two beams of light. The weight of the plunger and lever mechanism is relieved by a balance-weight on the far side of the pivot, so that the plunger rests on the mercury surface without appreciably depressing it. The instrument is 12 feet from the recording drum. At this distance the calculated scale-value of the record is 3 inches on the sheet for 1 inch change of height of the standard barometer. (Near the free surfaces of the mercury, both arms of the siphon tube are of the same bore, so that the plunger moves through one half the change of the indication of the standard barometer). The scale-value of the instrument is, in effect, determined experimentally by comparison with the readings of the standard barometer. The base-line values corresponding to the three daily readings of the standard are represented graphically by points on a chart. The adopted value at any time is read from a smooth curve drawn through the points. The photographic sheets being $9\frac{1}{2}$ inches wide, a range of
over 3 inches barometric motion can be included and re-adjustment of position of the trace is unnecessary. Dry-bulb and Wet-bulb Thermometers. On 1937 December 31 the standard dry-bulb and wet-bulb thermometers and maximum and minimum self-registering thermometers, both dry- and wet-bulb, were transferred from the revolving open screen, on which hitherto they had been mounted, to a Stevenson screen of large dimensions which had been set up a few yards to the westward. The old screen was subsequently erected in a new position on the north side of the Christie Enclosure, and daily readings, at 9^h , of maximum and minimum temperature in the open screen were resumed from 1938 May 1. The corrections to be applied to the thermometers in ordinary use are determined by comparison with the Kew standard thermometer No.515. The dry-bulb thermometer used throughout the year was Negretti and Zambra No.45354. The correction -0°.4 has been applied to the readings of this thermometer. The wet-bulb thermometer used throughout the year was Negretti and Zambra No.94737. The correction -0°.3 has been applied to the readings of this thermometer. The dry-bulb and wet-bulb thermometers are read at 9^h , 12^h (noon) and 15^h every day. Readings of the maximum and minimum thermometers are taken at 9^h and 15^h every day. The readings are employed to correct the indications of the recording dry-bulb and wet-bulb thermometers. Dry-bulb and Wet-bulb Recording Thermometers. The photographic apparatus which had been in use since 1887 was superseded on 1938 January 1 by a distant-recording thermograph. The action of this instrument depends on the pressure of mercury in a long flexible capillary tube of steel. The pressure alters the curvature of a Bourdon coil which in turn controls the position of a recording pen. The thermometers exerting the pressure are mounted in the Stevenson screen which contains also the standard thermometers. The recording mechanism is set up in the basement of the building, about 40 feet distant, constructed for the Yapp equatorial telescope, and the steel tube transmitting the pressure is laid in earthenware pipes buried about eighteen inches beneath the surface of the ground. The traces (in ink) showing the variations in temperature are directly visible through a window. The scale-value is approximately 20° F per inch. Radiation Thermometers. These thermometers are placed in an open position in the Christie Enclosure. The thermometer for solar radiation is a mercurial maximum thermometer with its bult blackened and enclosed in a glass sphere from which the air has been exhausted. The thermometer employed was Negretti and Zambra No. DB 3544. The thermometer for radiation to the sky is a spirit minimum thermometer, Negretti and Zambra No. DC 30597. The thermometers are laid on short grass, freely exposed to the sky. Earth Thermometers. There are two thermometers in use, the bulbs of which are sunk to depths of 4 feet and 1 foot, respectively, below the surface. Both thermometers are read daily at noon, the readings of the former being given in the daily results. Osler Anemometer. This self-registering instrument, devised for continuous registration of the direction and pressure of the wind together with the amount of rain, is fixed above the north-western turret of the ancient part of the Observatory. The direction of the wind is registered by means of a large vane (9 ft. 2 in. in length), connected by shaft and pinion with a rack-work carrying a pencil; the latter marks on a flat sheet of paper, moving horizontally. The vane is 25 feet above the roof of the Octagon Room, 60 feet above the adjacent ground and 215 feet above the mean level of the sea. A fixed mark near the north-eastern turret in azimuth 90° east, as determined by celestial observation, is used for examining at any time the position of the direction-plate over the registering table to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board. A circular pressure plate with an area of 192 square inches is attached 2 feet below the vane; moving with the latter it is always kept directed against the wind. A light wind causes the plate to compress slender springs, the motion being registered on the horizontal sheet by a pencil connected with the plate by a flexible brass chain which is always in tension. Higher wind pressures bring stiffer springs into play behind the plate, and the two sets of springs are adjusted by screws and clamps so as to afford fixed scales on the sheet, the scale for light winds being double that for strong winds. The scale is determined experimentally in pounds per square foot from time to time. The most recent determination was made on 1934 November 20. The recording sheet is changed daily at noon. The time scale is approximately 15 millimetres to the hour. The instrument was brought into use as long ago as 1840. Robinson Anemometer. This instrument, for registration of the horizontal movement of the air, is mounted above the roof of the Octagon Room and was brought into use in 1866. The four hemispherical cups are 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The cups are 21 feet above the roof of the Octagon Room, 56 feet above the adjacent ground and 211 feet above the mean level of the sea. A motion of the recording pencil through 1 inch corresponds approximately to horizontal motion of the air through 100 miles. The time scale is the same as for the Osler anemometer and the sheet is also changed daily at noon. The velocity recorded by the instrument is three times the actual velocity ν of the cups. After certain structural alterations were carried out in 1941 October, which included the introduction of a ball bearing for the revolving shaft, a series of comparisons was made between wind speed deduced from the pressure recorded by the Osler anemometer and the velocity of the cups, known from the above-mentioned relation. These comparisons established a new empirical formula, valid at all ordinary speeds and very close to $V = 2.70 \ v$. Accordingly, from 1942 January 1, the formula $V = 2.70 \ v$ has been adopted to modify the velocity recorded by the instrument. Rain Gauges. During the year 1947 three rain gauges were employed. The gauge No.1 forms part of the Osler anemometer apparatus and is self-registering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The apparatus is fully described in volumes previous to 1914. Gauge No.6 is an 8 inch circular gauge placed with the receiving surface 5 inches above the ground. No.8 is a newer gauge of the same diameter, but of the modified Snowdon pattern adopted by the Meteorological Office, having its receiving surface 1 foot above the ground. It is fixed about 4 feet north of the standard gauge No.6 which is read daily at $9^{\rm h}$ and $15^{\rm h}$. No.8 is used as a check on the readings of No.6 and is normally read at $9^{\rm h}$ only. The gauges are also read at midnight on the last day of each calendar month. The present height of the standard gauge above mean sea-level is 5 feet 9 inches less than in its old position in the Observatory grounds before its removal to the Christie Enclosure in 1899 January. The monthly amounts of rain collected in gauges Nos.6 and 8 are given on page D 90 of the Meteorological Results. Sunshine Recorder. The hourly results relate to apparent time. The instrument in use is of the Campbell-Stokes pattern with 4 inch glass globe. It was examined at the Meteorological Office in 1926 and found to be in satisfactory condition. It bears the serial number M.O.113. The recorded durations are those of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud or is very near the horizon. Conformity with Meteorological Office standards of measurement is maintained as far as possible. Night-Sky Recorder. The object of this instrument is to supplement the daily sunshine record in so far as it gives an indication of the amount of cloud. It consists of a small camera constructed of wood, mounted on a brick pier in the courtyard to the north of the Transit Pavilion, and permanently directed towards the celestial pole. The lens is of 18.8 inches focal length and 0.8 inch aperture. The actual camera is enclosed in a larger box about twice its length, extending nine inches beyond the lens. The lens itself is further surrounded by a hood. Adequate protection from dew is thus obtained, and also from rain, except when hard driven from the north. The photographic plates used are ordinary quarter-plate $(3\frac{1}{4}$ by $4\frac{1}{4}$ inches). Exposure is intended to be made during the period that the sun remains more than 10° below the horizon. The period is thus centred approximately on apparent midnight, but in practice the mean times of commencing and ending the exposure are not varied at intervals of less than seven days. The traces selected for measurement are those of Polaris and δ Ursæ Minoris. The measurement is effected by means of a glass scale on which pairs of concentric circles are photographically imprinted. The radii of these circles are slightly greater and slightly less than the radius of the trace to be measured, and the circles are divided into a time-scale of hour-angle, with ten-minute units. The plate is placed over the scale in a measuring frame and adjusted so that the trace is concentric with the containing circles on the scale. The hour-angle of the star, according to the scale, at the commencement and ending of the various portions of the trace is then read off to the nearest minute of time. The correction for error of orientation of the plate is made during the computation of mean time corresponding to hour-angle of star in the following manner. Whenever the sky is seen to be clear at the commencement of exposure, the
difference between the hour-angle given by the scale for the beginning of the trace and the corresponding mean time noted by the observer is taken as the quantity to be applied to the scale readings throughout the night, due allowance being made for the acceleration of sidereal time over mean time. When the sky is not clear at commencement, a computed quantity is used which includes an adopted mean value of the error of orientation. Variations in the error of orientation are found seldom to exceed two or three minutes of time and are unimportant to the records. ARRANGEMENT OF RESULTS. The results given in the Meteorological Section refer to the day commencing at O^h U.T., excepting the case of the night-sky record, for which they relate to the period from dusk on the day named to dawn of the following day. All results in regard to atmospheric pressure, temperature of the air and of evaporation, with deductions therefrom, are derived from the continuous records, excepting that the maximum and minimum values of air temperature are those given by eye observation of the ordinary maximum and minimum thermometers, reference being made, however, to the autographic register, when necessary, to obtain the values corresponding to the limits "midnight to midnight". The hourly readings for the elements mentioned are measured direct from the traces and reduced so as to be based fundamentally, both as regards scale and zero, on the readings of the standard instruments. The barometer results are not reduced to sea-level, neither are they corrected for the effect of gravity by reduction to the latitude of 45°. The monthly mean barometer reading is, however, corrected for the effect of the change of site of 1917 April before deducing the deviation from the mean of sixty-five years 1841-1905 (pp. D 58-81). This correction, amounting to -.007 inch, was by oversight omitted in the years 1917-1926. From 1926 January 1 the mean daily temperature of the dew-point and degree of humidity have been deduced from the mean daily temperatures of the air and of evaporation by use of Hygrometric Tables, issued by the Meteorological Office, Air Ministry. In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pp. D85 and D86) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pp. D84 and D85). The excess of the mean temperature of the air on each day above the average of sixty-five years, given in the "Daily Results of the Meteorological Observations" is found by comparing the numbers contained in column 5 with a table of average daily temperatures obtained by smoothing the accidental irregularities of the daily means derived from the observations for sixty-five years 1841-1905. In this series the mean daily temperature from 1841 to 1847 depends usually on 12 observations daily, in 1848 on 6 observations daily and from 1849 to 1905 on 24 hourly readings from the photographic record. The smoothed numbers are given in Table VII, Reduction of the Greenwich Meteorological Observations, Part IV, also in the Introduction to Results for 1910. In the case of maximum and minimum temperature the average of sixty-five years has been corrected for the presumed effect of the change of thermometer screen which took place on 1938 January 1. The corrections are given below. They were derived from comparisons between readings on the revolving stand and in a closely adjacent Stevenson screen, recorded daily during the period 1900 April to 1913 December. The daily register of rain contained in column 16 is that recorded by the gauge No.6, whose receiving surface is 5 inches above the ground (see p. xvii). The continuous record of the Osler self-registering gauge shows whether the amounts measured at 9^h are to be placed to the same, or to the preceding day; and also gives, in cases in which rain fell both before and after midnight, the means of ascertaining the proper proportion of the 9^h amount which should be placed to each day. The number of days of rain given in the footnotes and in the abstract tables pages D 83 and D 90, is formed from the records of gauge No.6. In this numeration only those days are counted on which the fall amounted to, or exceeded 0.005 inch. It may be understood that the greatest wind pressures usually occur in gusts of short duration. In the "Mean of 24 Hourly Measures" each measure represents the mean hourly value centred at the nominal hour. With regard to "Proportions of wind referred to the cardinal points" in the monthly summary on pages D 58-81, formerly the figures were such that the whole month was represented by the number of days in the month. In the "Results" for 1933 a change was made, and the whole month is now represented by 100, so that the figures are the equivalent of "percentages". The mean amount of cloud given in the footnotes on the right-hand pages D 59 to D 81, and in the abstract table, page D 83, is the mean found from observations made at 9^h , 12^h (noon), 15^h and 21^h each day. The following are the symbols which have been adopted for clouds and weather. ### BEAUFORT WEATHER NOTATION (modified in conformity with the usage of the British Meteorological Office) - t blue sky (less than one quarter covered with cloud) - tc sky partially cloudy (less than three quarters covered) - c sky generally cloudy, but not completely overcast - d drizzle - e wet air without falling rain - f fog, with objects invisible distant more than 1100 yards - F fog, with objects invisible distant more than 220 yards - g gloom - h hail - i intermittent - k storm (in combination with other symbols) - 1 lightning - m $\,$ mist, with limit of visibility between 1100 and 2200 yards - o sky overcast with unbroken cloud - p passing showers - q squall - r rain - s snow - rs sleet - t thunder - u threatening sky - v exceptional visibility; i.e. abnormal transparency of air - w dew - x hoar frost - y dry air; i.e. relative humidity less than 60 per cent - z haze A capital letter indicates "intense" The suffix o indicates "slight" A letter repeated indicates "continuous" ### CLOUD FORMS | Acu | Alto-cumulus | Cist | Cirro-stratus | St | Stratus | |-------|---------------|-------|-----------------|-------|----------------| | Ast | Alto-stratus | Cu | Cumulus | Stcu | Strato-cumulus | | Ci | Cirrus | Cun b | Cumulo-nimtus | Fr | Fracto- | | Cicu | Cirro-cumulus | Nost | Nimto-stratus | | | | | | ADDIT | FIONAL SYMBOLS. | | | | lu-ha | lunar halo | prhn | Parhelion | so-ha | solar halo | ## ROYAL OBSERVATORY, GREENWICH ABINGER MAGNETIC STATION ## Results of Magnetic Observations 1947 | | | | | | | | TA | BLE | · - | HOURL | Y MEA | NS OF | ' MAGNE' | ric D | ECLIN | ATION | · · · · · · · · · · · · · · · · · · · | | | | · · · · · | | | | |-------------------------------------|------------------------------|--------------------------------------|------------------------------|----------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|------------------------------|------------------------------|---|------------------------------|---|----------------------------------|---------------------------------------|------------------------------|------------------------------|----------------------------------|--------------------------------------|------------------------------|------------------------------|--------------------------------------| | U.T. 0 |) ^h 1 | lp 3 | 2 ^h 3 | 3 ^h 4 | 4 ^h | 5 ^h | 6 ^h : | 7 ^h 8 | ₃ h | 9 ^h 1 | 0 ^h 1 | 1 ^h | 12 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h | 18 ^h 1 | 9 ^h | 20 ^h : | 21 ^h | 22 ^h | 23 ^h 24 ^h | | January | | | | | | | | | | | | | uantitie | | | | | | | | | | | | | 1
2
3
4 **
5 ** | 46.7
47.2
45.6 | 47.3
47.0
47.1
44.6
43.6 | 47.8
46.7
47.0
46.1 | 47.0
46.8
47.2
46.0 | 47.1
47.1
47.1 | 46.6
46.7
46.9
46.4
48.1 | | 46.3
48.0
46.0 | 45.7
45.7
45.1 | 45.6
45.6
45.1
45.7
45.7 | 46.5
46.2
47.5 | 48.3
49.1 | 50. 5
49. 3
50. 2
52. 2
49. 6 | 51.8
51.3
51.4 | | 52.1
55.0 | 49.6
46.6
53.6 | 51.5
48.9 | 48.1
51.2
48.0 | 47.7
43.6 | 46.6 | 45.1
43.1 | 38.7
44.7 | 46.7
45.5
44.6 | | 6
7
8
9 *
10 * | 46.0
45.6 | 45.4
44.6
46.1 | 47.4
43.6 | 47.8
44.6
47.0 | 46.9
47.1
45.1
47.3
46.9 | 45.7
46.4 | 46.4
47.0 | 45.7
45.2 | 45.5
45.3
45.2 | 47.8
45.7
46.7
44.8
45.0 | 47.1
47.2
45.4 | 49. 2
48. 1 | 50.0
49.6
48.7 | 50.6
49.2
49.6 | 47.6
50.1
48.6
48.9
48.0 | 48. 9
48. 8
48. 5 | 47.8
48.1
48.5 | 49. 1
48. 5
48. 4 | 47.8
47.7
47.7 | 46.7
47.0 | 47.1
46.3
46.1 | 46. 1
46. 1
46. 1 | 43.9
46.4 | | | 11 * 12 * 13 * 14 15 | 45.9
46.4
45.8
45.7 | 46. 5
45. 1
46. 1 | 46.6
46.4
45.1
46.9 | 46. 5
46. 4
45. 1
46. 2 | 47.0
46.0
45.9
46.5 | 46.5
46.0
46.0
46.7 | 46. 2
45. 8
45. 8
46. 8 | 45. 4
45. 8
46. 0
45. 1 | 45.5
45.5
45.2
44.8 | 45.5
45.8
46.0
45.5
44.9 | 46.1
46.9
46.6
46.4 | 47.8
48.5
48.5
48.1 | 49.0
50.5
50.5 | 49.1
50.2
50.5
50.5 | 48.5
47.9
49.5
49.5
48.5 | 47.6
48.5
50.4
48.2 | 48.0
48.5
51.1
48.5 | 48.0
48.6
50.5
48.9 | 47.5
48.5
49.9 | 47.5 | 46.5
47.0
47.0 | 46.9
46.9
46.5 | 45.6 | 46.1
46.2
45.8
46.0
43.0 | | 16 **
17
18
19
20 | 43.1
44.1
42.4
43.2 | 44.4 | 43.6
44.0
44.4
45.0 |
44.9
45.0
46.6
44.9 | 45.4
45.5
46.5
45.5 | 44.5
45.1
46.3
45.0 | 45.5
45.2
45.8
45.6 | 45.6
45.0
45.0
45.4 | 45.7
44.5
43.6
44.7 | 44.1
45.5
45.4
44.2
44.8 | 45.3
46.1
45.2
45.9 | 47.4
47.5
47.2
47.1 | 49. 5
49. 1
49. 1 | 48.5
51.1
50.6
49.1 | 49.3
47.7
50.0
50.5
48.1 | 47.8
47.5
49.7
48.6 | 47.8
49.2
49.1
48.9 | 47.9
48.9
48.0
49.6 | 48.1
45.4
47.8
48.9 | 47.5
47.4
47.1
47.6 | 46.8
45.8
46.6
46.2 | 46.5
45.5
45.9
46.1 | 44.9
45.6
45.5
46.0 | 43.8
43.5
44.6
42.9
45.8 | | 21
22
23
24
25 ** | 46.7
44.1
46.6
46.0 | 46.4
43.9
46.6
45.6 | 46.5
44.0
46.7
45.2 | 46.1
45.5
46.4
49.0 | | 45.8
45.1
46.2
52.6 | 45.5
45.4
45.7
50.1 | 44.5
45.0
46.3
51.1 | 44. 5
44. 2
46. 7
50. 1 | 45.1
44.8
44.1
45.6
46.6 | 45.7
44.6
44.9
47.9 | 46.9
45.9
44.7
49.1 | 48.9
47.5
47.0
52.5 | 49.6
48.5
47.4
51.2 | 47.2
48.5
48.0
44.3
50.6 | 49. 2
48. 5
44. 6
49. 0 | 49.6
48.5
45.6
48.0 | 50.6
48.6
46.2
47.1 | 49.1
47.0
46.8
42.5 | 48. 1
47. 0
43. 1
46. 5 | 45.7
46.6
45.1
45.7 | 44.2
45.2
43.1
43.8 | 45.9
45.8
44.0
39.1 | 46.4
45.3
37.3 | | 26 **
27
28
29
30 | 43.5
46.7
44.6
43.7 | 45.0
43.0
44.6
43.2 | 46.8
46.8
44.2
42.8 | 47.2
44.3
45.2
43.3 | 38.5
48.6
44.2
42.2
44.3 | 46.6
45.3
43.2
44.5 | 45.6
45.2
44.1
44.3 | 44.3
44.7
44.7
44.6 | 43.1
44.6
44.0
43.8 | 43.6
43.7
44.7
45.2
45.3 | 46.0
45.1
46.1
47.7 | 48.6
46.1
48.1
49.1 | 48.2
49.8
50.3 | 50.7
50.8
51.0
51.1 | 51.3
48.1
49.1
51.8
50.2 | 49.6
48.5
50.5
48.8 | 50.2
47.7
49.6
48.2 | 50.9
47.9
48.1
48.1 | 49.6
47.6
47.3
47.7 | 46.5
47.1
47.0
47.0 | 42.6
39.8
45.1
46.2
46.3 | 43.2
42.8
45.7
46.3 | 43.4
42.3
45.5
41.7 | 42.2
43.7
45.1
39.4 | | 31
Mean | | | | | 45.7 | | | | | 44.7 | | | | | 49.6 | | | | | | 46.8 | | | | | Mean * | | | | | 45.7
46.8 | | | | | 45. 3
45. 4 | | | | | 49.5
48.6 | | | | | | 45.5 | | | | | Mean ** | 43.9 | 43.5 | 44.2 | 45.4 | 44.0 | 45.9 | 46.0 | 46.2 | 45.3 | 45.1 | | | | | 51.5 | 51.1 | 48.4 | 50.0 | 46.5 | 43.7 | 43.0 | 43.4 | 43.0 | 42.7 | | February | | | | | , | , | , | , | | 9° | + Tabu | ılar Qı | uantities | · , | | | , | | | ···· | , | | | , | | 1
2
3
4
5 | 46.7
45.7
46.2 | 46.8
45.1
43.0 | 46.8
45.0
42.0 | 46.4
45.1
43.2 | 44.7
46.3
45.0
43.6
45.6 | 46.2
45.1
45.3 | 45.7
44.8
46.0 | 44.8
44.7
45.6 | 43.8
45.7
44.0 | 43.7
43.3
44.9
44.3
44.0 | 45.2
46.1
45.6 | 47.7
47.9
47.9 | 49.5
49.5
50.4 | 51.7
50.9
49.7 | 49.7
51.4
50.7
50.4
49.6 | 50.5
51.5
49.6 | 48.7
50.5
48.2 | 48.2
50.3
47.8 | 48.0
50.6
47.6 | 47.8
48.3
46.9 | 46.4
47.7
46.9
46.3
46.2 | 47.6
46.2
45.0 | 47.1
46.3
45.2 | 46. 2
46. 4
46. 2 | | 6
7
8 **
9 **
10 | 46.0
45.1
42.1 | 46.1
46.0
41.0 | 46. 2
45. 0
46. 4 | 46.1
44.2
41.5 | 45.3
46.0
44.1
44.5
44.3 | 45.6
44.5
44.6 | 45.5
45.0
43.8 | 44.6
44.4
43.5 | 43.7
46.7
42.1 | 43.1
44.1
48.3
42.2
43.4 | 47.2
48.9
45.4 | 50.3
51.1
46.6 | 54.0
52.4
48.1 | 54.4
54.2
49.5 | 51.5
52.7
56.7
50.0
55.8 | 50.7
55.2
48.7 | 49.2
55.1
47.2 | 49.7
48.2
47.1 | 49.6
46.5
47.6 | 47.3
39.6
47.6 | 44.0
45.6
39.9
39.1
46.1 | 44.6
39.3
33.2 | 44.2
33.8
37.7 | 44.7
36.8
37.6 | | 11
12
13
14 *
15 * | 46.2
44.8
45.9 | 46.2
45.6 | 45.7
45.7
46.1 | 45.8
45.8
46.1 | 45.2
46.0
46.4
46.1
45.7 | 45.8
46.1
45.8 | 45.6
45.2
45.8 | 44.5
44.7
45.1 | 42. 4
42. 8
43. 5 | 41.5
40.7
42.1
41.7
40.2 | 42.5
43.4
42.7 | 45.8
47.0
45.7 | 48.9
50.7 | 50.7
51.1
51.2 | 51.1
51.3
51.1
51.7
50.6 | 50.3
49.8
51.1 | 49.0
48.7
49.1 | 48.7
47.7
48.4 | 47.8
48.2
48.9 | 47.2
47.9
48.2 | 47.7
46.8
47.0
47.6
47.1 | 46. 3
46. 8
46. 8 | 45.6
46.5
46.3 | 43.1 | | 16 **
17 **
18
19 **
20 | 36.4
44.1
43.3 | 28.9
40.7
42.0 | 27.7
40.9
42.1 | 38.6
41.6
41.7 | 46.2
40.1
40.6
41.7
44.7 | 39.9
42.0
40.6 | 43.6
42.5
40.6 | 39.8
42.5
42.6 | 38.8
41.6
40.9 | 41.8
42.2
41.6
40.3
41.4 | 44.7
45.0
42.5 | 47.9
48.9
46.1 | 51.4
52.0
50.2 | 51.7
52.0
54.0 | 58. 5
53. 6
51. 0
54. 1
50. 6 | 54.1
49.6
53.8 | 49.9
48.4
50.5 | 48.6
48.2
49.6 | 48.0
49.1
45.3 | 47.1
50.7
45.0 | 41.7
45.8
47.2
41.6
44.7 | 45.0
47.0
37.1 | 45. 1
43. 3
36. 5 | 45.0
43.1
36.8 | | 21 *
22 *
23 *
24
25 | 46.0
45.7
44.8 | 45.8
45.0 | 46.0
46.6
44.2 | 45.7
46.3
45.0 | 45.1
45.6
46.1
45.2
45.6 | 45. 2
45. 7
45. 1 | 44.6
44.7
45.0 | 43.5
43.6
43.9 | 42.0
42.1
41.9 | 40.4
41.1
41.1
40.6
42.3 | 43.0
42.6
42.6 | 46.3
45.6
47.1 | 48.9
48.6
49.3 | 49.8
50.0
50.6 | 49.0
49.6
50.2
51.9
51.1 | 48.6
48.6
50.6 | 47.5
47.2
48.7 | 46.6
47.1
47.4 | 46.6
46.7
46.1 | 46.5
46.6
45.8 | 46.0
46.2
46.5
45.8
45.4 | 44.0
45.9
45.1 | 44.3
45.6
45.1 | 45.6
45.3
45.2 | | 26
27
28 | 41.6 | 41.6 | 42.1 | 42.8 | 46.6
44.6
43.2 | 43.1 | 43.9 | 44.0 | 43.0 | 41.6
42.6
41.7 | 44.3 | 47.6 | 50.7 | 51.9 | 50.8
50.6
51.4 | 48.8 | 47.2 | 47.2 | 47.0 | 46.5 | 46.0
46.7
46.1 | 46.1 | 44.5 | 44.3 | | Mean | | | | | 44.8 | | 44.7 | 44. 0 | 42.7 | 42.4 | 44.4 | 47.4 | 50.2 | 51.5 | 51.7 | 50.4 | 49.0 | 47.8 | 47.5 | 46.7 | 45.5 | 44.3 | 43.8 | 43.9 | | Mean * Mean * | | | | | 45.7
43.3 | | | | | 40.9
43.0 | | | | | 50.2
54.6 | | | | | | 46.7
41.6 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | | | | | | | | | | MAGNE | | | | | | - | | | | | | |--|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|--------------------------|--|--|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---|----------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|--------------------------------------| | U.T. 0 | h 1 | h 2 | h 3 | gh , | ip . | 5 ^h | 6 ^h | 7 ^h | 8 ^h | 9 ^h 1 | 0 ^h 1 | 1 ^h | 12 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^b | 18 ^h 1 | 9 ^h 2 | 0 ^h : | 21 ^h 2 | 22 ^h 2 | 23 ^h 24 | | March | | | | | | | | , | | 9° | + Tabi | ılar Q | uantitie | s , | | | | | , | , | | | , | | | 1 *
2 **
3 **
4 | 45.4
44.1
30.2
31.6 | 43.6
43.1
27.1
39.2
47.2 | 43.5
42.0
27.4
40.8 | 43.1
43.0
40.2
40.1 | 42.8
44.6
41.1
49.1 | 42.6
41.4
41.2
54.2 | 43.
41.
46.
52. | 0 42.
2 42.
2 46.
3 46. | 6 41.6
0 39.6
0 47.0
6 41.1 | 41.8
47.0
47.2
51.0
39.6 | 44.6
44.6
50.7
43.0 | 48.6
49.6
51.3
46.1 | 50.7
55.1
52.2
49.1 | 52. 1
54. 1
54. 1
49. 9 | 51.1
53.2
53.1
47.6 | 49.0
53.6
54.7
47.8
48.0 | 47.3
50.4
51.0
46.0 | 47.0
53.2
49.3
43.9 | 46.6
51.5
33.6
35.6 | 46.2
52.9
25.6
38.6 | 46.2
46.0
25.7
41.1 | 45.5
44.5
27.6
41.2 | 43.6
35.6
34.6
45.0 | 43.6
25.9
41.1
45.0
44.1 | | 6 *
7
8 **
9
10 * | 44.7
44.6
42.1 | 45.1
45.1
44.7
32.0
44.9 | 45.5
46.5
34.4 | 45.1
48.1
36.2 | 44.2
45.2 | 43.6
45.6
41.2 | 42.
49.
42. | 9 39.
6 48.
6 48. | 37.6
1 45.3 | 39.1
38.2
49.5
43.2
40.4 | 41.3
49.1 | 46.6
54.9
49.6 | 54.6
58.6
53.7 | 55. 4
59. 7
54. 4 | 54.2
63.0
53.1 | 49.5
51.5
53.7
50.0
51.1 | 48.7
52.8
48.7 | 48.3
43.0
46.9 | 47.1
41.3
44.2 | 45.8
43.5
43.1 | 45.6
38.0
41.1 | 44.6
36.9
40.9 | 44.1
36.3
43.6 | 44.7
44.5
37.5
44.6
44.1 | | 11 *
12
13
14
15 ** | 45.0
44.5
45.6 | 45.1
43.7
44.3
46.2
42.9 | 44.4
44.1
46.3 | 44.5
44.5
47.0 | 46.8
44.5
47.7 | 46.2
44.5
47.6 | 42.
44.
44. | 6 40.
0 41.
0 40. | 39.3
5 39.6
7 41.3 | 39.5
39.3
40.0
41.6
36.0 | 42.7
42.7
42.6 | 49.1
47.5
46.6 | 51.8
51.0
50.0 | 52.8
53.5
50.6 | 55.0
54.0
50.6 | 49.9
52.9
52.6
50.6
57.9 | 49.1
50.6
48.7 | 47.7
47.3
46.1 | 47.0
46.8
46.8 | 47.0
46.7
46.1 | 46.6
46.2
44.0 | 45.3
46.4
45.2 |
44.2
45.9
44.6 | 44.9
44.4
44.6
43.2
41.6 | | 16
17
18
19
20 | 41.1
43.4
44.1
44.6 | 42.8
39.0
44.5
41.7
42.4 | 39.2
43.2
41.1
40.6 | 41.7
45.1
41.2
41.7 | 39.4
44.0
42.0
42.0 | 43.6
43.0
42.0
42.6 | 45.
41.
40. | 3 42.
3 39.
0 39. | 39.6
39.1
39.6 | 40.6
42.1
39.7
39.4
38.6 | 45.7
42.3
42.1 | 47.7
45.5
45.8 | 48.3
48.7
50.0 | 47.7
50.5
51.1 | 48.6
50.6
51.0 | 51. 0
47. 4
50. 2
50. 0
51. 4 | 46.5
46.2
48.6 | 43.6
46.6
45.6 | 43.2
45.7
45.6
46.2 | 44.6
45.6
44.7
43.7 | 42.2
43.0
41.3
42.7 | 42.1
43.2
42.5
43.5 | 43.6
44.5
43.0
42.7 | 35.4
43.0
45.0
41.7
41.3 | | 21 *
22
23
24
25 | 43.5
44.2
45.1
44.8 | 43.2
43.5
43.6
41.9
43.9 | 42.1
41.7
40.8
43.1 | 43.6
42.4
47.1
42.1 | 41.7
42.6
50.6
42.1 | 41.1
44.9
52.1
43.7 | 41.
43.
52.
44. | 7 40.
0 41.
6 42.
0 42. | 41.0
5 40.7
2 39.6
1 40.7 | | 48. 1
46. 3
42. 4
44. 4 | 51.6
52.1
44.7
48.6 | 53.7
54.1
47.9
51.1 | 55.0
52.3
49.6
51.6 | 54.1
51.4
49.9
50.5 | 50.6
50.2
48.0
49.6
49.2 | 49.5
43.1
47.6
47.3 | 47.1
42.6
47.1
45.1 | 39.6
44.6
45.7
44.8 | 41.6
45.2
44.6
43.5 | 44.8
43.6
45.6
43.5 | 46.0
43.6
44.6
42.0 | 45.8
43.0
44.3
42.0 | 41.7
45.2
43.9
46.2
42.5 | | 26
27
28 **
29
30 | 41.3
38.2
39.4
42.8 | 42.6
42.0
27.7
40.7
39.6 | 40.3
28.6
40.6
32.6 | 42.3
31.6
40.5
36.9 | 42.1
35.6
40.2
34.1 | 41.1
41.6
40.6
36.2 | 43.
44.
39.
39. | 7 43.5
6 50.6
3 37.6
0 38. | 9 40.5
5 47.2
5 37.6
1 38.1 | 41.5
44.4
49.1
39.4
38.4 | 48.3
48.5
43.4
43.7 | 49. 2
50. 9
48. 1
48. 3 | 50. 8
54. 1
52. 1
52. 1 | 51.5
54.0
51.4
53.1 | 51. 2
52. 1
51. 1
55. 3 | 52.9
50.7
48.7
50.4
54.6 | 50. 1
46. 1
48. 1
50. 6 | 48. 1
38. 6
46. 6
46. 0 | 45.6
43.2
43.7
45.2 | 41.8
46.6
41.3
43.6 | 45.6
46.5
42.7
44.6 | 44.4
41.6
42.6
44.7 | 47. 2
39. 3
42. 0
44. 4 | 42.0
46.0
42.5
37.9
43.7 | | 31 | | 41.6 | | | | | | | | 42.7 | | | · | | | 49.7 | | | | | | | | 44.3 | | Mean
Mean * | | 41.8 | | | | | | | | 41.9 | | | | | | 50.9 | | | | | | | | 42.5
43.8 | | Mean ★★ | 40.4 | 37.1 | 37.6 | 41.2 | 42.1 | 43.2 | 45. | 7 46. | 43.6 | 45.8 | 45.9 | 50.5 | 54.9 | 55.7 | 55.8 | 53.7 | 50.4 | 46.7 | 43.5 | 42.9 | 40.4 | 38.8 | 37.8 | 37.7 | | April | | | | | | | | | | 9° | + Tabu | ılar Q | uantitles | 3 | | | | | ··· | | | | | | | 1 *
2
3
4
5 | 44.1
44.6
40.6 | 43.6
44.2
44.6
42.1
41.2 | 44.3
45.4
42.3 | 44.6
46.7
43.1 | 43.2
42.0
43.6 | 43.5
42.0
45.6 | 43.
40.
43. | 39.0
2 37.1
1 40.1 | 37.6
2 36.2
3 39.5 | 40.6
38.1
37.2
41.6
37.3 | 41.5
42.5
47.1 | 46.1
48.6
53.6 | 51. 0
53. 0
57. 2 | 53.3
55.5
54.8 | 52. 2
54. 7
54. 0 | 52. 1
50. 6
53. 6
50. 6
47. 7 | 48. 1
50. 1
44. 6 | 44.6
47.6
44.2 | 44.5
46.6
43.6 | 45.1
46.0
42.1 | 45.6
45.6
38.8 | 45.1
46.6
40.8 | 45.0
44.2
39.0 | 44.1
44.4
42.5
38.6
44.1 | | 6
7
8
9 **
10 | 44.5
43.6
40.6 | 44.8
44.3
44.2
40.6
43.2 | 44.6
43.9
40.4 | 44.0
43.6
43.0 | 43.9
43.4
44.7 | 43.6
43.2
46.9 | 42.
41.
43. | 39.6
38.6
42.6 | 37.4
36.6 | 39.7
37.8
37.8
41.7
37.5 | 41.3
42.2 | 47.9
47.1
43.2 | 53.9
55.0
50.0 | 56. 5
56. 3
52. 1 | 54.7
54.5
48.6 | 49.4
53.0
51.0
46.6
51.1 | 48.1
48.4
44.2 | 46. 2
46. 4
44. 5 | 46.0
45.3
44.4 | 46.0
45.6
44.7 | 45.6
45.5
44.6 | 45.6 | 45.0
46.2
44.0 | 45.0
41.6
45.7
42.6
45.2 | | 11
12
13
14
15 | 41.6
39.6
40.0
41.2 | 40.5
41.9
40.7
38.3
37.1 | 41.6
37.2
38.2
38.8 | 40.7
40.0
38.7
43.3 | 41.0
40.2
41.2
42.5 | 40.9
41.6
41.3
42.7 | 40.
40.
40.
42. | 4 38.1
1 38.1
9 39.1
2 39.1 | 37. 2
5 37. 1
3 38. 5
7 38. 5 | 37.3
39.2
38.8
40.1
41.1 | 43.0
43.0
44.3
45.8 | 47.7
48.5
48.2
49.8 | 52.3
52.9
50.8
51.7 | 56. 5
52. 1
52. 7
53. 5 | 54.7
52.6
51.1
51.7 | 51.6
52.6
49.6
50.2
50.8 | 49.6
48.1
46.8
47.7 | 47.1
45.9
45.6
45.4 | 43.3
45.1
45.7
44.0 | 43.6
44.6
44.0
44.7 | 45.6
43.7
40.9
44.8 | 42.4
40.8
41.2
43.1 | 37.8
42.2
42.1
43.7 | 42.8 | | 16
17 **
18 **
19 **
20 ** | 36.5
35.2
43.2
45.0 | 43.7
39.7
34.7
41.6
42.2 | 42.8
35.2
46.7
42.1 | 40.8
36.1
42.2
42.3 | 40.6
37.9
40.6
42.9 | 42. 2
39. 9
40. 7
46. 8 | 41.
41.
39.
45. | 3 40.
3 43.
9 39.
1 41. | 40.2
44.2
39.2
39.7 | 40.2
42.0
46.8
40.8
41.0 | 44. 2
49. 5
43. 7
43. 9 | 47.0
54.1
47.7
46.7 | 52. 2
54. 7
53. 0
49. 1 | 56.8
53.3
49.2 | 58.6
56.9
51.8
49.0 | 62.7
52.9
49.3
48.1 | 50.7
47.7
46.7 | 55.7
47.1
43.0
46.3 | 57.1
45.2
45.2
41.7 | 50.3
46.0
45.8
41.6 | 31.4
45.5
45.6
44.0 | 32.1
45.2
45.1 | 15.6
40.1
44.7
44.2 | 24.9
43.2
40.7
43.7 | | 21 *
22 *
23 *
24 *
25 | 43.7
44.2
44.1 | 43.7
43.8
43.8
43.9
43.2 | 43.7
44.4
43.8 | 43.2
43.9
43.7 | 43.2
44.2
43.4 | 42.7
41.4
42.6 | 40.
39. | 38.3
2 37.4 | 38.9
36.5
36.7
37.2
36.7 | 37.8 | 42.3
41.4
44.8
42.4
40.7 | 46.2
49.9 | 49.8
53.3 | 51.8
53.7 | 50.9
52.3 | | 47.1
48.2 | 45.2
46.4 | 44.4
45.8
46.1 | 44.1
45.8
45.8 | 44.2
45.7
45.6 | 44.5
45.2 | 44.3
44.8
44.5 | 44.1 | | 26
27
28
29
30 | 42.6
44.7
43.9 | 45.3
42.8
44.0
43.9
42.8 | 42.6
43.2
43.6 | 42.2
44.4
43.7 | 42.4
44.9
44.7 | 41.8
44.1
42.3 | 40.
39.
40. | 39.6
5 37.3
7 38.4 | 36.7
36.8
38.1 | | 39.5
42.1
45.7 | 42.8
46.7
46.3 | 46.9
50.8
52.7 | 49.3
53.8
52.4 | 49.7
52.0
51.2 | 50.3
47.2
49.8
48.8
50.2 | 46.1
47.7
46.7 | 45.3
45.7
45.0 | 43.2
44.7
44.2 | 42.2
43.7
44.7 | 43.1
42.8
44.5 | 44.4
44.5
44.7 | 44. 5
44. 2
44. 2 | 40.4
44.7
43.0
44.7
44.4 | | Mean * Mean ** | 44.1 | 42.3
43.8
39.8 | 43.8 | 43.5 | 43.9 | 42.6 | 40. | 39.0 | 37.8 | 39.5
39.1
42.5 | 42.9 | 47.6 | 51.0 | 52.8 | 52.1 | 50.7
50.3
51.9 | 48.4 | 46. 6 | 45.5 | 45.3 | 44.9 | 44.3 | 44. 2 | 42.4
44.3
39.0 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | | | | TA | BLE 1 | I | HOURL | Y MEA | NS OF | MAGNET | ric D | ECLIN | ATION | | | | | | | | | |----------------------------------|--------------------------------------|--------------------------------------|------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|------------------------------|---|------------------------------|--------------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------| | U.T. | 0 ^h 1 | l ^h 2 | 2 ^h : | 3 ^h 4 | 4 ^h | 5 ^h | 6 ^h | 7 ^h (| 3 ^h | | | | | | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h | 18 ^h 1 | 9 ^h 2 | 20 ^h 2 | 1 ^h 2 | 22 ^h 2 | 24 ^l | | May | | · | | | | | | | | 9° | + Tab | ular Q | uantities
, | s | | | | | | | | | | | | 1
2 *
3
4
5 | 43.9
43.7
43.8
44.3
44.3 | 44.1
44.6
43.9 | 44.0
43.3 | 43.8
42.1
44.2
42.5 | 46.2
40.7
42.2 | 47.6
39.3
41.5
38.3 | 44.0
38.0
40.4
36.3 | 41.3
37.0
39.8 | 37.2
39.7
38.3 | 41.3 | 43.2
44.5
46.0 | 43.7
47.0
49.1
49.5
48.0 | 48.3
48.2
52.2
51.7 | 50.7
49.4
52.8 | 48.0
50.7
50.1 | | 45.3
44.8
45.1 | 43.9
43.2
43.7 | 43.8
43.3
43.2 | | 44.2
44.7
43.8 | 44.7 | 44.7
44.6
45.0 | 44.2
44.7
44.7 | | 6
7
8 *
9 *
10 * | 44.7
44.7
44.2
44.6
44.7 | 43.8
44.1
44.1 | 44.2
43.6
44.2 | 43.7
43.0
42.7 | 42.6
42.7
41.9
42.1
42.2 | 41.2
40.2
39.7 | 40. 2
39. 5
38. 7
38. 5
37. 7 | 38.7
38.0 | 39.0
38.2
37.7 | 42.7
41.2
40.7
40.7
39.2 | 45.2
44.1
44.7 | 49.3
47.6 | 52.3
49.3 | 52.8
51.3
52.1 | 50.3
50.9
51.2 | 49.1 | 46.3
46.8
47.1 | 43.4
44.7
44.7
46.0
45.2 | 43.8
43.9 | 44.7
44.7
45.7 | 46.1
45.3
45.3
45.7
45.1 | 44.4
45.1 | 44.7
45.2
45.0 | 44.4
44.7
44.9 | | 11
12
13
14 **
15 ** | 40.6
40.7
39.4
44.5 | 41.0
41.2
37.7
43.1 | 41.3
42.1
37.3
44.4 | 38.4
41.3
36.3
41.6 | 39.7
35.7
40.1 | 36.7
36.3
34.2
37.7 | 35.7
35.7
34.2
35.3
35.7 | 36.5
34.7
34.1 | 38.7
38.0 |
42.3
44.6 | 45.7
46.0
48.3 | 49.7 | 50.8
51.8 | 52.4
50.8
50.7 | 51.9
49.7
50.7 | 51. 2
49. 6
48. 9
48. 1
49. 1 | 47.2
48.7
46.6 | 45.6
46.8
43.4 | 42.9 45.9 | 45.7
43.3
44.8 | 45.6
42.2
43.2
39.7 | 38.3
43.8
42.7 | 44.1
40.7
45.0
42.5 | 45.6
41.7
44.8
41.9 | | 16 **
17
18
19
20 | 42.2
43.3
40.7
41.8 | 39.3
43.2
41.3
41.8 | 39.6
40.1
41.8
41.7 | 40.4
39.8
40.2
41.0 | 38.7
38.8
41.2
37.8
40.7 | 38.3
39.7
36.7
37.7 | 37.7
34.3
36.7 | 38.8
36.7
36.1
38.2 | 39.4
38.7
40.7
39.7 | 43.3
43.1 | 47.2
45.7
47.2
48.3 | 50.8
49.1
51.8
52.1 | 51.1
54.7
53.7 | 53. 2
52. 8
56. 6
54. 3 | 52.4
53.7
54.6
53.3 | 50.7 | 48.3
49.7
48.2
47.6 | 47.2
46.7
45.5
45.8 | 44.7
44.7
43.7
45.3 | 43.8
43.2
44.3
45.5 | 43.7
44.1
43.7
44.5
45.3 | 44.2
44.8
43.7
44.7 | 44.4
42.8
42.7
43.5 | 44.2
40.7
42.1
43.2 | | 21
22
23 **
24 **
25 | 42.3
42.7
43.3
42.1 | 42.3
42.6
43.1
42.6 | 43.3
44.5
43.2
42.7 | 42.2
46.0
42.8
39.8 | 42.5
38.7 | 40.2
28.7
42.3
38.2 | - | 39.6
36.6
38.7
37.3 | 41.0
34.7
28.1
37.5 | 36.2
46.8
40.9 | 48.5
39.8
43.9
46.1 | 52. 2
45. 2
47. 8
50. 7 | 49.6
50.7
54.0 | 55.0
52.5
51.5
52.7 | 53.2
52.9
52.6
51.5 | 51.0
50.6 | 48.2
51.1
49.1
47.2 | 45.7
46.8
46.7
44.7 | 43.3
44.6
45.6
43.0 | 43.5
44.1
44.7
43.7 | 45.1
44.6
44.8
43.7
44.3 | 44.7
44.3
43.7
45.1 | 45.2
44.1
43.2
44.8 | 43.5
43.4
42.7
46.7 | | 26
27
28
29
30 * | 45.8
44.2
42.7
45.1 | 46.1
44.2
43.3
44.1 | 47.7
42.9
43.7
42.8 | 44.6
41.2
43.7
41.2 | 40. 2
42. 7
39. 1 | 39.7
37.6
42.9
35.7 | 35.0
42.2
32.6 | | 38. 1
36. 2
42. 2
34. 3 | 39.0
39.0
41.3
37.5 | 43.7
42.6
45.1
42.2 | | 52. 8
52. 2
50. 2
49. 9 | 52.8
54.7
51.1
50.6 | 51.3
56.1
49.7
49.5 | 50. 2
49. 7
51. 6
43. 7
47. 2 | 46.9
50.7
43.5
45.4 | 44.3
47.2
43.6
43.5 | 41.7
44.6
42.2 | 43.1
44.7
43.1 | 44.5
43.7
45.2
40.7
43.3 | 44.7
46.1
45.3 | 44.7
42.3
45.9 | 44.9
43.5
45.6 | | 31 | | | | · · · · · · · · · · · · · · · · · · · | 40.6 | · · · · · · · · · · · · · · · · · · · | | | | 43.2 | | | | | | 50,0 | | | 45.1 | 45.2 | 44.1 | 40.7 | 42.9 | 46.2 | | Mean
Mean * | | | | | 40.7 | | | | | 41.1
39.5 | | | | | _ | 49.3 | | | | | 44. 2
44. 7 | | | | | Mean ★★ | 41.5 | 40.6 | 42.5 | 41.0 | 37.6 | 36.9 | 37.7 | 36.4 | 35.5 | 42.2 | 44.4 | 48.0 | 50.7 | 52.1 | 51.7 | 49.8 | 48.4 | 46.0 | 44.6 | 43.8 | 43.0 | 43.8 | 44.0 | 43.0 | | June | | | | | | | | | | 9° | + Tabu | ılar Qı | uantities | 3 | | | | | | | | | | | | 1 **
2 *
3 4
5 ** | 44.3
45.6
44.2 | 45.1
44.1 | 43.2
45.2
43.1 | 41.9
46.6
41.7 | 35.9
39.6
43.6
40.2
41.0 | 36.7
39.1
38.7 | 34.3
34.5
37.2 | 34.0
33.3
38.6 | 35.6
35.1
40.7 | 38.2
39.1
40.2
45.0
48.1 | 43.8
45.6
49.1 | 47.6
51.1
51.5 | 51.6
54.8
52.2 | 53.6
56.6
52.5 | 53.1
54.2
51.1 | 47.1
50.2
50.6
48.2
52.2 | 47.1
47.7
46.8 | 43.6
45.7
44.2 | 41.1
45.3
44.6 | 41.9
44.9
45.1 | 43.5
43.2
44.7
45.2
47.0 | 43.6
44.7
45.6 | 44.6
44.8
44.7 | 45.1
44.6 | | 6
7
8
9
10 | 40.6
34.7
40.7 | 40.4
36.8
42.2 | 39.7
35.7
44.7 | 40.3
34.7
41.7 | 37.7
39.6
40.6
37.8
39.3 | 36.4
37.8
40.1 | 38.6
38.9 | 35.1
36.7
36.7 | 36.6
34.5
36.9 | 39.2
34.9 | 41.1 | 50.3
43.7
46.2 | 49.3 | 54.1
50.5
51.0 | 53.4
52.3 | 49.1
52.4
51.6
50.2
50.0 | 48.6
49.5 | 45.6
49.5
46.8 | 44. 2
46. 2
43. 6 | 44.2
42.1
44.8 | 42.7
43.4
44.3
44.8
42.2 | 40.7
45.6
43.3 | 39.2
42.6
43.7 | 33.6
40.1
42.1 | | 11
12 *
13
14 **
15 | 42.7
39.7
37.6 | 40.8
43.2
41.1
35.2
37.8 | 42.8
39.7
38.3 | 41.7
39.6
45.1 | 38.8
39.0
39.7
30.2
34.9 | 36.6
36.8
31.1 | 37.9
35.2
33.7 | 35.7
38.2
36.7
33.4
33.0 | 38.3
38.7
35.8 | 40.5
39.8
38.2 | 43.5
43.3
42.6
45.7
41.3 | 46.2
46.5
48.3 | 48.7
48.2
49.2 | 50.2
50.2
49.6 | 50.2
52.5
49.1 | 50.0
48.7
51.1
47.7
49.7 | 47.2
48.9
45.8 | 46.7
46.9
44.2 | 46.5
46.0
42.2 | 45.1
43.0
44.8 | 44.8
44.0
44.7
45.0
43.6 | 43.2
46.3
44.8 | 42.3
43.3
44.7 | 40.7 | | 16 *
17 **
18
19
20 | 43.6
42.1
43.1 | 43.2 | 43.3
40.4
40.7 | 48.2
39.9
40.8 | 39.1
45.3
39.8
41.2
42.2 | 43.6
39.4
36.2 | 38.1
39.7
34.5 | 37.1
40.1 | 38.2
40.9
35.5 | 44.3
39.7 | 44.6
48.3 | 49.7
52.7
48.6 | 51.4 | 52.7
54.1
53.5 | 55.1
52.6 | 50. 2
57. 1
51. 1
53. 1
51. 8 | 55.3
49.4 | 56.3
46.6
45.2 | 47.9
45.2
43.4 | 44.7
45.8
44.3 | 43.7
43.7
44.7
44.2
43.3 | 43.6
44.2
43.2 | 44.7
39.7
42.8 | 44.1
41.8 | | 21
22
23
24
25 ** | 43.0
45.5
45.1 | 44.2
46.9
44.7 | 41.7
44.2
45.3 | 42.7
40.8
43.8 | 41.9
38.7
40.7
40.3
39.7 | 36.1
40.6
38.7 | 34.3
39.3
38.9 | 39.3 | 34.6
40.6
37.2 | 38.3
43.3
38.9 | 45.7 | 47.3
48.3
44.5 | 51.3
50.7
47.1 | 53.4
51.7
47.6 | 52.9
53.9
48.2 | 50.2
50.7
50.7
47.7
47.2 | 48.1
48.0
47.9 | 46.4
46.9
47.3 | 45.1
45.2
46.7 | 44.1
43.9
45.4 | 43.8
43.7
45.3
45.0 | 44.9
44.2
43.0 | 43.5
44.5
43.7 | 44.2
44.9
44.7 | | 26
27 *
28
29 *
30 | 43.6
44.5
44.3 | 43.3
44.2 | 41.7
42.3
43.6 | 40.1
41.4
41.8 | 40.7
38.1
40.3
39.7
41.7 | 36.0
38.7
37.7 | 34.7
37.3
37.3 | 34.9
37.3
36.2 | 35.2
38.8
35.5 | 41.4
37.1
42.3
37.2
42.7 | 40.4
43.7
41.2 | 44.3
48.0
47.0 | 47.0
50.5
49.7 | 49.1
51.2
51.2 | 50.2
49.7
50.7 | 49.1
48.9
48.7
48.6
48.7 | 45.8
46.0
45.7 | 43.8
43.7
43.3 | 43.2
42.5
43.2 | 44.1
44.2
43.2 | 46.3
43.8
44.3
43.5
44.7 | 44.1
43.7
43.7 | 44.3
43.7
44.7 | 44.9
44.3
45.4 | | Mean | 42.5 | 42.2 | 41.6 | 41.2 | 39.6 | 38.1 | 36.7 | 36.4 | 37.3 | 39.9 | 43.6 | 47.6 | 50.2 | 51.6 | 51.4 | 50.1 | 48.0 | 46.3 | 44.7 | 44.2 | 44.2 | 44.1 | 43.6 | 42.7 | | Mean * Mean ** | | | | | 39.1
38.4 | | | | | 38.4
41.2 | | | | | | 49.3 | | | | | 43.6
44.8 | | | | | | | 1 | | | , · | | , | | | | | | | , · | , , | | | | .,,. | | | | | | ^{*} International Quiet Day. ** International Disturbed Day. | ## Company Part Par | | | | | | | | T | ABLE | 1 | HOURL | Y MEA | NS OF | MAGNET | ric D | ECLIN | ATION | | | | | | | | | |--|-------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------|-------------------------|------------------------------|----------------------|------------------------------|------------------------------|----------------------
----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|--|------------------------------|----------------------|----------------------| | 1 | U.T. (| 0 ^h 1 | h | 2 ^h 3 | 3 h | 4 ^h 5 | , h | 6 ^h | 7 ^h 1 | 3 ^h | 9 ^h 1 | 0 ^h 1 | 1 ^h | 12 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h | 18 ^h | 19 ^h | 20 ^h 2 | 21 ^h 2 | 2 ^h 2 | 3 ^h 24 | | 1 | July | | | | | | | · | | | | + Tabı | ılar Q | | | | | | | | | | | | | | 7 38.8 38.9 38.4 38.4 37.2 37.3 34.8 37.3 34.5 37.4 90.8 40.6 30.6 30.8 37.8 37.3 37.8 37.8 40.8 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 | 2
3 *
4 * | 44.7
40.7
42.4
42.9 | 44.8
41.5
41.8
42.7 | 42.7
41.7
41.1
41.6 | 40.7
42.0
39.7
40.7 | 42.5
38.3
39.6 | 36. 2
35. 2
37. 1 | 37.1
34.6
36.7
34.8 | 36.3
38.7
34.8 | 36.8
37.4
37.8
35.8 | 39.7
37.5
41.2
37.7 | 41.9
44.4
41.4 | 47.3
45.7
46.7 | 51.1
50.1
48.6
51.3 | 52.5
51.2
49.2
52.3 | 51.7
50.2
48.2
52.2 | 50.1
50.1
46.7
49.3 | 48.5
47.1
44.9
47.2 | 46.0
44.4
44.7
45.3 | 42.7
42.1
43.5
43.4 | 43.2
44.2
43.2 | 2 44. 2
2 45. 0
2 43. 2
2 43. 3 | 45.1
45.6
42.6
42.8 | 43.2
44.0
42.8 | 42.9
43.7
43.2 | | 12 | 7
8
9 | 38.8
40.8
39.9 | 38.9
39.7
40.1 | 38.8
40.3
38.9 | 39.4
39.7
39.2 | 37.3
39.0
38.1 | 34.8
36.8
35.5 | 35.3
37.7
34.4 | 34.5
37.4
35.1 | 35.8
39.3
34.2 | 37.4
38.7
37.2 | 40.8
39.9
41.2 | 45.6
43.9
46.6 | 50.6
48.3
50.0 | 53.8
52.3
51.6 | 54.3
52.8
52.6 | 52.8
51.8
51.6 | 49.2
48.8
49.6 | 47.6
47.3
47.6 | 46.6
44.1
47.2 | 45.1
43.0
46.0 | l 43.8
0 44.4
0 43.6 | 43.9
44.4
43.0 | 44.4
43.0
43.2 | 41.3
40.9
43.3 | | 17 # 84 | 12
13
14 * | 40.1
40.8
43.2 | 41.0
37.8
42.9 | 40.9
37.9
41.8 | 42.8
38.8
40.5 | 42.5
38.0
39.0 | 39.3
36.7
37.3 | 36.9
35.1
35.8 | 37.4
34.9
34.9 | 37.7
36.4
36.2 | 39.5
39.8
38.8 | 43.2
43.3
42.3 | 46.4
46.4
46.8 | 49.9
49.4
50.1 | 51.8
52.6
50.8 | 51.0
51.4
50.4 | 48.8
50.3
50.0 | 47.2
47.8
48.8 | 45.6
44.1
45.8 | 44.3
42.5
44.8 | 43.8
43.8
44.3 | 9 43.8
8 44.9
3 45.2 | 43.8
44.3
44.8 | 43.8
42.3
44.2 | 43.5
42.8
42.7 | | 22 41,2 40,6 40,2 41,8 39,7 38,9 37,2 38,0 38,1 39,7 40,8 44,6 47,7 51,7 33,0 38,1 40,7 41,2 41,1 40,1 40,8 44,1 43,0 42,2 41,2 41,4 41,0 41,6 41,3 41,4 41,4 41,5 41,5 41,5 41,5 41,5 41,5 | 17 **
18 **
19 ** | 42.6
33.6
39.8 | 42.0
35.3
41.7 | 41.2
38.3
46.2 | 40.2
34.1
39.6 | 38.9
34.6
35.6 | 36.7
29.1
35.2 | 35.3
26.9
37.6 | 34.4
29.2
37.1 | 34.5
29.9
39.0 | 36.1
34.6
39.3 | 39.6
39.6
41.4 | 45.9
45.9
43.6 | 51.1
47.2
47.5 | 54.0
51.7
48.8 | 52.8
55.1
46.1 | 50.5
52.1
45.0 | 49.0
50.1
44.3 | 49.1
48.1
41.7 | 55.3
41.8
40.6 | 51.1
44.0
42.2 | 1 50.6
0 43.0
2 42.8 | 48.6
45.3
43.0 | 47.7
42.5
43.2 | 43.0
39.6
43.3 | | 27 42.8 42.5 42.5 45.5 46.0 48.0 48.0 48.7 38.5 38.5 42.0 45.6 48.7 49.5 50.1 48.5 46.9 45.0 42.0 43.5 46.3 42.0 43.6 48.7 49.5 31.3 40.1 41.3 41.4 41.7 41.4 41.3 40.2 38.5 37.4 39.3 40.7 42.0 48.8 49.1 31.3 50.3 47.8 45.9 44.4 44.3 48.9 43.8 43.8 42.3 31. 42.3 41.8 40.3 38.7 37.3 36.3 35.7 35.4 36.3 35.7 41.6 45.8 49.1 31.3 50.3 47.8 45.9 44.4 44.3 44.9 43.8 43.8 43.8 42.3 41.8 40.3 38.7 37.3 36.3 35.7 36.8 35.7 36.8 35.8 41.6 42.8 49.9 50.9 52.7 53.8 51.7 48.6 44.4 44.3 44.3 44.0 43.9 43.8 43.8 42.8 48.8 49.1 49.1 49.1 49.1 49.1 49.1 49.1 49.1 | 22
23 **
24 | 41.2
40.6
42.2 | 40.6
42.2
42.7 | 40.2
42.4
41.3 | 41.8
44.6
42.0 | 39.7
41.1
42.6 | 38.9
40.1
37.7 | 37. 2
37. 6
36. 5 | 37.0
37.8
35.2 | 38.1
35.6
35.6 | 39.7
37.5
37.8 | 40.8
38.8
41.6 | 44.6
42.8
44.7 | 47.6
46.6
47.0 | 51.7
50.3
48.6 | 53.0
48.9
48.5 | 51.2
49.6
48.2 | 48.6
48.2
46.6 | 46.0
46.2
44.3 | 44.2
43.6
43.5 | 43.1
43.2
43.7 | 1 40.1
2 42.6
7 43.6 | 40.8
41.2
43.8 | 44.1
39.6
43.7 | 43.6
42.1
42.9 | | Mean # 41.4 41.0 41.0 39.8 37.5 36.6 38.5 41.6 48.8 49.2 50.9 50.9 49.7 47.5 45.4 44.0 43.9 43.6 43.6 43.0 42.8 48.8 48.8 48.2 41.9 49.9 50.9 50.5 48.9 47.2 45.4 44.4 43.9 44.0 43.6 43.0 42.8 48.8 48.8 48.2 48.8 48.8 48.8 48.8 | 27
28
29 | 42.8
41.4
42.3 | 42.5
41.0
41.1 | 42.5
42.3
41.5 | 45.5
41.5
43.2 | 46.5
40.6
42.0 | 46.0
38.6
40.4 | 48.0
37.5
38.6 | 43.7
36.5
37.4 | 38.5
36.5
37.1 | 38.5
36.5
38.1 | 42.0
38.1
41.5 | 45.6
41.9
46.0 | 48.7
44.9
48.8 | 49.5
47.1
50.7 | 50.1
48.5
51.0 | 48.5
48.5
49.8 | 46.9
46.1
46.5 | 45.0
43.9
44.8 | 42.9
42.0
42.0 | 42.5
43.3
42.9 | 5 41.9
3 43.5
9 43.0 | 42.4
42.5
42.7 | 42.4
41.9
42.0 | 43.0
42.6
41.5 | | Mem * 42.5 42.2 41.5 40.8 39.6 37.3 36.0 35.9 36.6 37.3 36.0 35.9 36.6 37.3 36.0 35.9 36.6 36.0 | 31 | 42.3 | 41.8 | 40.3 | 38.7 | 37.3 | 36.3 | 35.7 | 35.4 | 36.3 | 38.1 | 40.9 | 45.8 | 50.9 | 52.7 | 53.8 | 51.7 | 48.6 | 45.3 | 42.7 | 42.7 | 43.7 | 43.0 | 41.0 | 39.3 | | Mean #4 40,2 41.2 42.0 40.4 38.8 35.3 34.8 35.3 35.8 37.0 40.2 44.6 48.2 50.7 50.1 49.0 46.8 45.6 44.4 44.3 44.1 44.2 42.9 42.3 41.9 41.8 40.1 35.7 34.5 35.8 30.3 30.1 34.3 39.0 42.1 44.6 46.8 51.3 54.8 54.1 55.3 48.3 45.4 44.8 43.3 39.3 41.4 42.2 41.9 41.3 41.3 41.2 42.9 42.3 41.9 41.3 41.2 42.9 42.3 41.9 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 | 1 41.8 40.1 35.7 34.5 35.8 30.3 30.4 34.3 39.0 42.1 44.6 46.8 51.3 54.8 54.1 53.3 48.3 49.4 44.8 43.3 39.3 41.4 42.2 41.9 2 41.3 41.3 41.2 35.2 38.3 39.3 38.4 38.3 38.8 42.7 47.4 47.6 7 47.7 31.6 32.7 53.3 54.8 54.1 53.3 48.3 49.3 49.3 49.3 49.3 49.3 49.3 49.3 49 | 1 | August | <u> </u> | | | | | | | | | 9° | + Tabu | ılar Qı | antities | 3 | | | | | | | | | | | | 8 * 43.0 39.3 38.3 39.9 39.3 36.8 37.8 37.8 34.4 33.5 34.1 36.5 39.8 44.1 49.5 50.6 53.8 52.8 50.5 53.3 54.8 44.6 4.2 49.6 9 * 42.0 41.4 40.0 40.8 39.4 37.7 37.6 36.4 35.5 34.1 46.2 50.5 53.3 52.8 50.5 53.3 52.8 50.5 47.5 44.9 43.9 44.1 43.9 43.5 43.4 42.4 42.4 42.4 42.4 42.5 42.4 42.4 42 | 2
3
4 | 41.8
41.3
41.3
40.3 | 40.2
41.7
41.5 | 39.2
41.2
40.7 | 38.5
40.3
39.3 | 39.3
38.7
38.8 | 38.3
36.3
37.7 | 35.4
35.2
35.8 | 38.3
34.2
35.5 | 38.3
35.4
35.3 | 38.8
38.6
37.6 | 42.7
41.2
42.7 | 47.7
46.0
47.9 | 51.6
51.1
51.4 | 53.7
53.7
53.7 | 54.2
53.3
52.8 | 49.9
50.5
50.7 | 46.5
46.4
46.8 | 45.0
43.9
43.6 | 42.1
42.3
42.4 | 42.6
39.9
43.2 | 43.3
42.4
2 43.2 | 39.9
43.3
42.5 | 39.4
42.4
42.0 | 41.0
41.4
41.4 | | 12 40.8 37.3 34.2 38.6 38.4 \$7.8 37.3 37.5 36.8 38.9 \$40.5 \$44.9 \$49.1 \$50.0 \$51.5 \$47.8 \$45.4 \$45.4 \$44.9 \$44.9 \$43.9 \$43.4 \$43.4 \$43.6 \$43.5 \$38.2 \$43.1 \$44.9 \$43.9 \$43.1 \$43.6 \$45.2 \$38.2 \$43.1 \$44.3 \$43.3 \$43.3 \$45.2 \$45.4 \$46.9 \$49.3 \$48.9 \$46.2 \$44.4 \$43.3 \$43.1 \$43.8 \$44.4 \$43.3 \$44.4 \$41.5 \$45.6 \$45.2 \$38.2 \$44.4 \$43.3 \$44.1 \$41.9 \$45.6 \$45.2 \$38.2 \$44.4 \$43.3 \$44.1 \$41.9 \$45.6 \$45.2 \$38.2 \$45.4 \$45.9 \$45.2 \$45.2 \$45.4 \$45.9 \$45.2
\$45.2 \$ | 7
8 *
9 * | 42.9
43.0
42.0 | 41.5
39.3
41.4 | 41.8
38.3
40.0 | 41.4
39.9
40.8 | 41.5
39.3
39.4 | 37.8
36.8
37.7 | 34.4
37.8
37.6 | 33.5
36.9
36.4 | 34.1
37.0
35.0 | 36.5
38.5
36.0 | 39.8
41.4
38.4 | 44.1
46.2
44.1 | 49.9
50.5
49.5 | 53.9
53.3
50.6 | 53.9
52.8
50.8 | 52.4
50.5
49.2 | 49.5
47.5
46.8 | 47.3
44.9
45.0 | 44.8
43.9
44.4 | 44.7
44.1
44.4 | 44.4
43.9
44.4 | 43.4
43.5
44.5 | 43.4
43.4
42.4 | 43.2
42.6
42.4 | | 17 | 12
13
14 | 40.8
38.3
38.3 | 37.3
40.1
39.0 | 34.2
39.6
43.3 | 38.6
39.2
39.5 | 38.4
38.4
39.8 | 37.8
35.9
37.8 | 37.3
36.5
38.4 | 37.5
37.6
38.4 | 36.8
40.4
37.3 | 38.9
41.4
38.8 | 40.5
42.6
41.0 | 44.9
46.2
44.1 | 49.1
50.9
46.9 | 50.0
51.5
49.3 | 51.5
51.9
48.9 | 47.8
50.3
46.2 | 45.4
52.4
44.4 | 45.4
46.9
44.3 | 44.9
43.3
43.1 | 44.9
44.1
43.8 | 43.9
41.9
44.4 | 43.4
45.6
43.3 | 43.4
45.2
44.4 | 40.0
38.2
41.8 | | 22 ** | 17
18 **
19 | 43. 4
39. 9
39. 4 | 40.4
47.1
40.3 | 39.2
34.2
40.4 | 42.3
36.3
44.0 | 48.7
38.4
40.0 | 42.8
46.6
36.4 | 34.4
41.4
39.1 | 39.1
34.6
37.4 | 38.4
33.1
39.5 | 40.3
38.9
40.9 | 42.4
41.5
45.2 | 46.8
47.0
48.6 | 48.6
48.8
50.4 | 50.0
51.1
49.6 | 50.8
52.5
48.4 | 48.9
49.8
51.9 | 45.9
46.4
46.1 | 41.0
42.6
46.5 | 38.4
37.6
42.4 | 37.8
37.7
42.2 | 38.7
41.1
42.4 | 34.4
36.9
41.9 | 40.4
42.8
39.4 | 38.4
45.4
40.9 | | 27 | 22 **
23 **
24 | 42.2
42.0
41.4 | 42.4
41.0
40.2 | 43.0
31.7
40.9 | 40.4
35.0
42.1 | 41.8
39.8
42.7 | 44.3
36.4
40.4 | 42.5
36.0
41.9 | 38.4
32.9
43.4 | 40.4
34.9
42.9 | 25.6
38.0
40.7 | 28.2
42.4
41.9 | 44.4
44.7
45.4 | 47.7
48.0
48.2 | 48.0
49.4
48.1 | 45.9
50.6
47.2 | 44.9
45.9
43.5 | 40.7
44.2
41.4 | 43.0
41.6
40.4 | 44.1
37.5
38.5 | 41.1
40.9
36.9 | 43.5
43.8
38.4 | 41.3
42.5
39.4 | 41.0
42.0
40.5 | 43.0
42.0
40.4 | | Mean 40.5 40.2 39.2 39.2 39.2 38.0 36.9 36.5 37.0 38.7 41.9 46.5 50.0 51.4 51.0 49.0 46.3 44.2 42.8 42.6 42.4 41.7 41.7 40.9 Mean * 41.4 40.5 39.8 40.4 38.7 37.4 36.9 36.1 36.0 37.9 41.4 46.3 50.5 52.0 51.5 49.7 47.3 44.8 \$\frac{1}{4}3.9 43.8 43.4 43.1 42.6 41.7 | 27
28
29 | 40.4
40.3
37.5 | 39.2
39.8
37.3 | 37.8
40.2
36.9 | 34.3
40.2
32.9 | 36.8
38.8
36.0 | 36.0
38.0
36.3 | 34.8
36.5
36.3 | 35.9
35.7
35.7 | 40.0
36.1
36.8 | 41.8
38.3
39.3 | 43.3
42.7
44.6 | 45.2
47.0
49.9 | 47.4
50.0
52.8 | 47.8
50.9
52.3 | 46.9
51.3
50.7 | 44.6
48.7
49.8 | 42.9
44.9
47.1 | 42.3
44.4
44.7 | 42.5
44.4
44.3 | 42.6
44.8
44.3 | 42.4
43.3
43.3 | 42.4
40.7
41.8 | 42.2
40.9
41.3 | 41.3
39.3
40.8 | | Mean * 41.4 40.5 39.8 40.4 38.7 37.4 36.9 36.1 36.0 37.9 41.4 46.3 50.5 52.0 51.5 49.7 47.3 44.8 43.9 43.8 43.4 43.1 42.6 41.7 | 31 | 40.6 | 40.7 | 39.9 | 38.4 | 38.9 | 37.9 | 35.4 | 33.7 | 34.1 | 38.7 | 43.9 | 47.6 | 51.1 | 52,5 | 50.8 | 48.7 | 46.3 | 45.2 | 44.7 | 43.9 | 41.6 | 42.8 | 39.0 | 39.7 | | The day some series and series | Mean * | 101 1010 JULY JULY JULY JULY JULY JULY JULY JULY | ^{*} International Quiet Day. ** International Disturbed Day. | | | | · | | - 1 | | T | BLE : | | HOURL | Y MEA | NS OF | MAGNET | ric D | ECLIN | ATION | | | | | - 1, 1, 2 | | | | | |--------------------------------------|---|--------------------------------------|----------------------|----------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|-------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|-------------------------|----------------------|---|----------------------|----------------------|----------------------|-------------------|---|--|----------------------|--|-----------------| | U.T. (| 0 ^h 1 | h 2 | ^h 3 | 3 ^h 4 | h 5 | h | 6 ^h | 7 ^h 8 | 3 ^h | 9 ^h 1 | 0 ^h 1 | 1 ^h | 12 ^h 1 | 3 ^h | 14 ^h | 15 ^h 1 | 6 ^h 1 | 7 ^h | 18 ^h | 19 ^h | 20 ^h | 21 ^h | 22 ^h | 23 ^h | 24 ^h | | September | | | | | | | | | | 9° | | ular Q | uantitles | | | | | | | | | | | | | | 1 * 2 3 ** 4 5 | | 37.2
41.2 | 39.8
35.3
37.3 | 39.3
34.3
35.5 | 38.2
31.3 | 33.9
35.3 | 35.8
35.2
30.7
36.3
36.8 | 28.0 | 34. 4
23. 7
36. 2 | 37.4
39.4
38.3 | 43.1
42.2
48.2
41.0
45.3 | 47.7
48.3
45.3 | 53.3
50.9
52.9
48.2
53.3 | 50.7
53.6
50.1 | 48.2
49.3
50.4 | 48.4
45.4
44.5
49.0
45.4 | 42.7
46.6
46.3 | 44.3 | 42.3
39.5
44.1 | 42.
37.
39. | 3 42.
7 43.
3 37.
1 40. | 3 42.7
3 43.5
3 37.4
3 40.6
8 43.3 | 41.
42.
39. | 7 40.3
5 39.3
3 38.9 | 3
3
9 | | 6
7
8
9 *
10 * | | 40.0
32.8
38.5 | 37.6
35.2 | 38.1
38.7 | 37.4
39.8
39.7
38.4
38.4 | 34.9
38.9 | 35.2 | 33.4
35.3 | 35.9
32.3
35.0 | 35.3
36.2 | 42.7
39.1
39.8 | 44.8 | 47.7 | 51.3
49.3
48.7 | 54.8
48.2
48.4 | 51.3
49.9
46.6
47.0
47.4 | 49.3
44.9
44.8 | 48.3
42.8
42.8 | 42.9
42.0
41.7 | 32.41.42. | 4 36.6
9 42.1
1 42.4 | 4 41.7
5 35.3
2 42.7
4 42.4
3 42.4 | 38.3
41.9
41.4 | 36.8
9 41.4 | 8
4
3 | | 11
12
13
14 **
15 ** | 40.8
33.0
37.9 | 40.9
40.9
29.7
41.1
41.1 | 40.3
34.3
33.0 | 38.8
36.3
37.5 | 38.1
40.1
43.7 | 36.8
42.6
44.4 | 34.5
41.8
43.5 | 33.9 | 35.3
44.3
39.8 | 40.1
45.7
40.0 | 42.4
43.8
49.9
45.8
43.9 | 47.3
49.8
48.8 | 48. 4
52. 0
51. 0 | 46.4
51.3
47.0 | 44.4
47.0
47.3 | 47.1
42.8
45.3
44.3
49.5 | 41.3
41.2
44.4 | 41.3
40.4
30.4 | 42.2
41.0 | 44.3
38. | 3 45.3
4 37. | 5 40.8
3 39.3
5 32.8
3 40.7
8 43.5 | 38. 4
28. 7 | 3 39.8
35.6
7 34.5
5 33.7
4 39.5 | 6
5 | | 16
17
18
19
20 | | 39.3 | 42.4
37.8
41.7 | 36.3
39.1
45.0 | 38.3
36.5
35.8
42.7
41.7 | 38.3
39.3
40.1 | 39.9
40.9 | 38.1
36.8
37.3
39.3
37.8 | 36.8
37.1 | | 42.3 | 45.4
45.9
46.3
44.7
41.4 | 47.4 | 50.7
47.6
48.4 | 49.3
46.6
48.4 | 44. 4
46. 6
46. 3
48. 4
46. 9 | 42.6
44.3
43.7 | 42.9
36.3
38.8 | 37.8
42.4
42.2 | 35.
38. | 3 36.
2 37.
8 38.
3 36.
9 40. | 9 36.8
1 39.2
3 36.9 | 31.9
40.4
39.3 | 3 41.3
9 44.8
4 37.3
3 42.8
4 34.9 | 8
3
8 | | 21
22
23
24 **
25 ** | 39.3 40.0 40.6 40.9 42.0 44.8 42.1 43.4 40.3 36.9 40.9 43.0 47.3 49.6 50.4 49.7 42.2 44.0 42.2 36.2 35.3 32.6 35.6 33.4 39.3 36.3 38.8 40.9 41.1 50.0 44.2 40.8 42.5 42.8 44.3 46.8 47.9 48.4 48.3 46.9 44.8 43.4 42.8 42.3 41.9 41.4 40.7 40.7 40.7 40.7 40.8 42.8 36.6 41.5 44.3 42.8 42.4 40.3 38.8 40.4 44.9 46.1 51.1 53.6 54.4 54.5 41.7 42.5
27.6 29.7 31.3 32.5 33.2 33.9 42.8 18.8 22.8 30.0 38.9 38.8 34.5 25.8 32.3 35.7 44.0 48.8 51.8 50.4 51.3 49.8 46.8 45.2 38.6 39.1 31.3 35.4 32.6 36.8 39.9 37.7 31.3 32.4 34.8 36.7 35.3 35.3 35.0 36.9 41.0 46.3 49.6 49.3 45.9 43.3 41.4 41.3 42.2 42.7 42.3 41.3 39.8 37.9 37.6 37.3 37.7 38.5 38.2 36.4 34.4 33.9 35.4 38.7 47.5 44.3 43.4 43.1 43.1 43.0 43.8 40.7 38.9 39.2 39.3 38.9 38.4 38.3 38.6 36.9 35.3 34.0 32.6 35.6 39.8 43.3 45.3 46.4 46.7 46.2 43.5 41.3 41.3 41.3 40.9 37.3 35.0 35.5 35.5 35.0 35.9 41.0 46.3 46.4 46.7 46.2 43.5 41.3 41.3 41.3 41.3 40.9 37.3 35.0 35.5 36.4 34.8 36.9 35.3 35.0 35.6 39.8 43.3 45.3 46.4 46.7 46.2 43.5 41.3 41.3 41.3 41.3 40.9 37.3 35.0 35.5 35.0 35.5 35.0 35.0 35.0 35 | | | | | | | | | | | | | | | 4
7
9
8 | | | | | | | | | | | 26
27
28 *
29 *
30 | 39.9
38.7
39.3 | 37.7
37.6
38.9 | 31.3
37.3
38.4 | 32.4
37.7
38.3 | 34.8
38.5
38.6 | 36.7
38.2
36.9 | 35.3
36.4
35.3 | 35.3
34.4
34.0 | 35.0
33.9
32.6 | 36.9
35.4
35.6 | 41.0
38.7
39.8 | 46.3
45.3
43.3 | 49.6
50.7
45.3 | 49. 3
49. 4
46. 4 | 45.9
47.5
46.7 | 43.3
44.3
46.2 | 41.4
43.4
43.5 | 41.3
43.1
41.3 | 42.2
43.1
41.3 | 42.
43.
41. | 7 42.
0 43.
3 40. | 3 41.3
8 40.7
9 37.3 | 39.8
38.9
35.0 | 37.9
39.2
35.5 | 9
2
5 | | Mean | 37.8 | 37.6 | 37.7 | 38.3 | 38.6 | 39.1 | 37.7 | 35.8 | 36.0 | 38.1 | 42.2 | 46.1 | | | | 47.0 | | | | | | 2 39.3 | | | | | Mean.*
Mean.★★ | | 38. 4
34. 5 | | | | | | | | | 40.4 | | | | | 46.7
48.5 | | | | | | 3 41.1
4 37.9 | | | | | October | | | | | | | | | | 9° | + Tabi | ular Q | uantities | 3 | | | | | | | | | | | | | 1
2 ***
3
4
5 | 31.0
37.3 | 33.3
27.9
33.2
37.9
39.3 | 29.6
38.9 | 30.3
32.8
39.3 | 38. 2 | 35.4
33.9
38.3 | 36. 2
36. 3 | 37.2
31.9
33.5 | 38. 1
29. 7
32. 0 | 39.9
32.7
32.9 | 41.3
45.9
37.7
36.9
39.6 | 49.3
42.1
42.4 | 54.0
45.3
46.9 | 53.4
50.9
48.5 | 51.4
47.3
48.8 | 45.8
43.3
45.2
46.6
46.6 | 45.5
42.7
44.0 | 44.8
42.1
42.7 | 43.7
41.4
42.3 | 36.
41.
41. | 2 40. | 5 31.3
9 38.9
9 40.2 | 26.
32.
39. | 5 35.3 | 9 3 2 | | 6
7
8
9 **
10 ** | 37.9
38.7
38.8
35.3
33.1 | 37.8
39.1
37.9
37.7
37.9 | 38.3 | 33.7 | 39.4
39.7
39.3
37.4
35.8 | 39.7
39.6
38.5
39.3
40.1 | 39. 2 | 37.3
38.1
42.0 | 35.3
36.3
43.2 | 35.4
35.8
41.1 | 36.4
37.8
38.3
43.3
46.0 | 41.3
40.9
47.2 | 45.4
45.4
52.2 | 47.0
48.3
52.7 | 47.9
48.0
50.9 | 48.4
47.7
46.2
46.3
50.3 | 47.3
45.4
50.8 | 47.0
42.7
48.9 | 42.7
43.0
41.4 | 45.
42. | 9 39.
2 42.
0 37. | 39.3
7 32.0
4 41.9
9 35.7
3 35.0 | 39.3
41.3 | 3 39.6
3 39.8
1 39.2
5 30.2
0 31.3 | 8
2
2 | | 11
12 **
13
14
15 ** | 37.1
37.3
35.9 | 31.2
40.6
38.4 | 32.4
42.1
42.8 | 39.3
38.2
39.7 | 42.6
39.3 | 41.2
46.3
47.4 | 44.4
53.2 | 47.7
40.9
40.7 | 39.8
38.3
37.3 | 38.8
37.2
38.8 | 41.9
42.3
40.8
41.3
40.3 | 45.0
42.7
45.3 | 44.7
47.9 | 50. 1
45. 2
48. 4 | 46.9
44.4
48.4 | 38.0
43.9
43.3
44.6
44.3 | 37.3
43.3
43.0 | 34.3
40.9 | 33.7
31.3
33.4 | 32.
38.
35. | 7 34.
7 39.
0 27. | | 38.2
31.4
31.4 | 9 30.8
2 38.3
4 33.6
4 33.3
9 36.3 | 3
6
3 | | 16
17
18
19
20 | 42.4
39.1 | 33.8
40.3
40.4
39.8
43.2 | 38.4
40.5
40.9 | 39.3
41.3
40.9 | 40.9 | 39.9
40.3
40.3 | 39.4
40.4 | 37.7 | 36.0
37.9
38.3 | 38.1
39.3
42.3 | 39. 9
42. 4
42. 9
46. 1
41. 9 | 46.5
46.3
50.0 | 49.0
50.8 | 47.5
50.3
49.2 | 47.4
48.7
48.3 | 39.8
42.4
39.3
47.9
41.7 | 43.4
40.8
43.0 | 41.5
41.8
43.6 | 35.3
40.4
44.4 | 38.
36.
34. | 6 39.
4 36.
1 32. | 5 39.4
3 39.8
3 37.9
8 35.3
4 33.7 | 39.4
35.1
38.2 | 2 40.0 | 9
3
0 | | 21
22
23
24
25 | 39.3
37.0
39.7 | 33.2
39.7
37.9
33.2
37.6 | 37.9
38.7
34.7 | 36.8
38.4
36.7 | 39.7
38.8
38.4
38.3
39.0 | 40.4
42.9
38.3 | 38. 2
40. 5 | 37.3
36.9
36.3
35.6
36.3 | 36.0
35.8 | 38.3
35.8 | 40.3
41.7
40.4
42.2
38.3 | 43.9 | 46.8
46.2 | 48.8
47.6
48.0 | 47.3
45.9
46.5 | 44.9
45.9
45.7
44.5
43.6 | 44.3
42.9
42.8 | 42.8
42.3
42.3 | 41.8
43.6
42.8 | 41.
38.
42. | 4 41.
7 39.
6 42. | 5 40.7
3 40.8
6 39.4
3 40.9
8 40.7 | 39.8
40.6
39.3 | 0 39.2
3 38.3 | 8
2
3 | | 26 *
27 *
28 *
29 *
30 * | 40.3 | | 40.3 | 39.4
40.2
39.8 | | 39.3 | 38. 5
38. 3
38. 4
38. 4
38. 8 | 36.8
36.8
36.9 | 35.3
35.7
35.3 | 37.3
37.0
36.9
36.5
36.8 | 41.1
39.8 | 43.8
44.5
42.7
43.7
42.8 | 46.6
44.5
45.8 | 46.0
44.3
46.3 | 45.3
43.9
44.9 | 43.2
43.3
43.1
43.8
43.6 | 42.8
42.9
44.3 | 42.9
42.8
44.7 | 42.6
42.7
43.0 | 41.
42.
43. | 8 41.
0 41.
7 42. | 0 41.0
5 41.4
8 41.3
7 41.5
3 40.8 | 41.0
40.9
40.4 | 0 40.9
9 40.7
4 40.3 | 9
7
5 | | 31 | 40.4 | 40.3 | 39.9 | 39.3 | 38.8 | 39.9 | 39. 2 | 38.3 | 37.3 | 37.4 | 40.9 | 44.8 | 46.3 | 45.4 | 45.7 | 44.8 | 44.5 | 43.7 | 42.6 | 42. | 3 41. | 3 40.4 | 38.9 | 38.4 | 4 | | Mean
Mean * | | 37.5
39.8 | | | | | | | | | 40.9
40.1 | | | | | 44.5
43.4 | | | | | | 9 37.9
9 41.2 | | | _ | | Mean ★★ | | 34.7 | | | | | | | | | 43.6 | | | | | 45.6 | | | | | | 4 34.4 | | | | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | | | | | | TA | BLE | ı | HOURL | Y ME | ns o | F MAGNE | TIC I | ECLI | OITAN | 1 | | | | | | | | | |-------------------------------------|---------------------------------|------------------------------|---|---|--------------------------------------|---|------------------------------|-------------------------|--------------------------------------|---|------------------------------|--------------------------------------|------------------------------|--------------------------------------|------------------------------|----------------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------|--|----------------------------------|------------------------------|----------------------------------|------------------------------|--------------------------------------| | U.T. | 0 ^h | 1 ^h | 2 | h 3 | h . | ∮ h | 5 ^h | 6 ^h | 7 | ,h { | 3 ^h | 9 ^h 1 | 0 ^h 1 | 1 ^h | 12 ^h 1 | 3 ^h | 14 ^h | 15 ^h | 16 ^h 1 | 7 ^h | 18 ^h | 19 ^h | 20 ^h | 21 ^h | 22 ^h | 23 | h 24 ^h | | November | | , | | , | | | , | | | | | 9° | + Tab | ular G | uantitie: | s | | | , | | | , | , | | | | | | 1
2
3 *
4
5 * | 37.
39.
40. | .9 3
.3 3
.3 4 | 38. 9
38. 8
10. 3
17. 4
19. 3 | 39.9
40.3
40.3
38.9
40.6 | 39.3
38.0
40.2
39.8
39.4 | 39.3
37.3
40.1
39.3 | 39.3
38.4
39.4 | 3
4
4
3 | 39.3
38.3
39.3
39.3
38.9 | 38. 2
38. 0
38. 4
38. 3
38. 3 | 36.9
36.3
37.0
37.3 | 37.9
36.8
36.8
38.3 | 39.7
39.7
41.7 | 44.4
42.8
41.7
44.4
43.9 | 44.5
45.3
43.8
46.8 | 45.4
45.7
44.4
47.1 | 43.8 | 43.8
43.5
43.9
41.9 | 43.0
42.3
42.8
43.7 | 42.3
42.3
42.8
43.7
42.0 | 42.
42.
42.
42. | 1 41. | 8 41.
7 41.
8 40.
4 40. | 3 3
0 4
3 4
8 4 | 0.4 3
0.0 3
0.3 3 | 9.2 | 38.3
39.8
37.5
38.6
39.8 | | 6 *
7 *
8 **
9 **
10 ** | 40
37
39 | .9 3
.9 3
.8 3 | 10. 1
16. 4
16. 6 | | 40.1
40.3
37.2
38.7
37.3 | 38.3
37.9 | 40.0
38.9
40.3 | 0
9
3 | 39.0
40.0
40.8
41.2
42.4 | | 39. 1
39. 3
37. 5 | 38.3
39.2
38.6
39.5
37.8 | 41.4
42.3
42.8 | | 45.7
48.3 | 43.5
47.9
51.7 | 42.9
49.0
46.7 | 41.8
42.2
46.4
49.4
43.0 | 42.4
42.8
44.3 | | 41.
40.
36. | .9 41.
.6 41.
.1 37.
.7 40.
.2 39. | 4 41. | 8 4
8 3
9 2 | 0.8 3
2.9 3 | 9.4
6.4
0.5 | 40.4
37.1
36.6
35.0
36.3 | | 11 **
12
13
14
15 | 37.
36.
38. | .3 3 | 6.9
8.0
9.7 | 32.4
36.6
39.8
40.4
39.9 | 38.3
35.8
39.6
40.4
38.4 | 39.9
39.3
40.1 | 37.9
39.5
38.5
39.4 | 5
5
4 | 38.3
39.0 | 37.8 | 39.8
36.7
38.4 | 38.2
38.8
38.0 | 38.9
41.2
40.1 | 44.0
41.3
42.9
43.0
42.6 | 42.9
45.4 | 44.2 | 42.7
43.3
46.4 | 42.7
42.3
44.8 | 40.8
40.3
42.4 | 33.9
38.6
40.7
38.7
41.5 | 38.
36.
40. | 1 40.
6 38.
6 38.
5 38.
4 40. | 8 38.
3 39.
4 36. | 2 3
4 3
4 3 | 8.7 3
9.3 3 | 8.4
5.8 | 38.4
36.4
37.7
38.3
35.0 | | 16
17
18
19 **
20 | 36.
39.
37.
38. | .7 3
.9 3
.4 3 | 8. 0
8. 5
9. 5
8. 4 | 38.9
40.4
39.5
38.0 | 40.5
40.3
39.4 | 41.2
38.9
41.4
39.3 | 38. 4
41. 4
38. 3 | 4
4
4
3 | 39.0
38.4
40.3
38.4 | 38.4
38.4
41.9
37.8 | 37.9
38.7
40.5
37.0 | 37.9
39.4
36.8 | 39.8
39.7
40.9
39.3 | 43.9
42.4
41.4
43.1
41.9 | 44.2
45.0
43.4 | 44.
4
45. 1
45. 6
45. 3 | 44.4
45.0
44.0
44.6 | 43.6
43.8
45.0
42.4
43.0 | 43.0
44.9
40.8
41.4 | 43.4
44.8
42.4
40.4 | 42.
42.
39.
40. | 8 38.
1 40. | 4 40.
2 39.
0 36.
4 40. | 5 3
8 3
4 3
1 3 | 9.7 3
8.0 3
5.8 3
7.1 3 | 9. 0
6. 4
6. 0
5. 8 | 35.9
39.1
36.3
36.8
37.9 | | 21
22
23
24
25 | 39.
40.
37.
35. | .8 3
.0 3
.4 3 | 9. 4
9. 4
7. 6
8. 5 | | 38.9
38.6
38.5
38.4
38.4 | 38.8
39.3
38.4
37.9 | 38.9
38.4
38.5
37.8 | 9
4
5
8 | 38.6
38.3
38.5 | 38.4
40.4
38.0
37.9 | 37.9
43.3
37.0
38.5 | 37.5
38.5 | 39.5
41.1
39.6
38.5 | 41.0
40.9 | 43.2
44.4
42.8
42.3 | 45.1
44.4
43.3
43.0 | 44.2
44.0
42.7
42.2 | 43.9
42.3
43.5
42.6
42.0 | 40.9
42.8
41.8
41.0 | 41.0
42.4
41.6
40.9 | 41.
41.
44.
40. | 8 40. | 5 40.
6 40.
4 36.
6 40. | 4 39
5 39
6 40 | 9.7 3
9.5 3
7.7 3
0.0 3 | 9. 6
8. 3
7. 0
9. 5 | 39.7
39.8
38.1
32.8
39.0 | | 26 *
27
28
29
30 | 36.
39.
38. | .5 3
.2 3
.7 3
.8 3 | 7. 6
8. 9
8. 7 | 38.3
38.8
39.9
38.9
39.7 | 40.1
37.7 | 38.7 | 40.0
37.7 | 5
)
7 | 39.7
38.6 | 39.2
39.1 | 37.1
38.4
38.3 | | 37.7
38.8
38.8 | 41.1
40.6
41.3
40.9
40.2 | 42.7
42.9 | 44.5
43.7
44.3 | 43.7
44.3
44.8 | 42.2
43.0
44.0
43.8
43.5 | 42.0
43.7
43.4 | 41.6
42.8
43.4 | 41.
42.
44. | 0 41.
6 41.
2 41.
2 40.
1 37. | 1 40.
2 39.
6 39. | 5 40
9 39
8 3 | 0.0 3
9.6 3
7.1 3 | 9.6
8.8
5.2 | 36.0
39.6
39.1
37.3
38.2 | | Mean
Mean * | | | | | 39.0
39.7 | | | | | - | - | 38.1
38.1 | | | | | | 43.6
42.5 | | | | 2 40.
1 41. | | | | | | | Mean ★★
December | | .9 3 | 6.3 | 35.8 | 38.4 | 38.8 | 39.6 | 5 | 40.7 | 40.3 | 38.9 | 38.8
9° | | | 45.2
uantitles | | 44.9 | 46.0 | 42.9 | 38.9 | 39. | 2 39. | 0 36. | 4 33 | 3.5 3 | 3.8 | 36.6 | | recembel | | , | , | , | , | , | , | | , | , | , | , | | , | , | , | , | 12.2 | | | | , ,, | | , , | , | , | , | | 1
2
3 *
4
5 | 37.
39. | 7 3
9 3 | 8.4
9.6 | | | | 39.4
38.3
39.6 | <u>1</u>
3 | 38.3 | 39.2
39.6
39.3
40.1
39.7 | 38.8 | 38.4
38.6
38.5 | 40. 2
39. 8
38. 7 | | 42.0 | 45.0
42.9 | 44.2
42.3
42.2 | 43.3
44.7
42.2
42.3
43.1 | 41.8
41.7
41.7 | 41.1 | 41. | 8 40.
2 40.
7 40.
9 40. | 0 39.
2 39.
7 39.
2 38. | 7 3:
8 39
0 30
9 39 | 7.7 3
9.4 3
6.6 3 | 8.8
7.1 | 38.7
37.2
39.1
38.3
33.1 | | 6 **
7
8
9 **
10 | 37.
38.
39. | 8 3 | 9.6
8.8
9.4 | 29.0
40.2
39.6
39.1
40.6 | 40.7
39.3 | 37.3 | 40.3
39.1
39.3 | 3
[. | 40.2
43.9
41.7 | | 38.8
38.6
40.3 | 37.7
39.2 | 38.5
39.3
39.7 | 46.3
40.1
40.5
43.4
42.7 | 42.2
41.2
43.7 | 42.6
43.1
45.6 | 42.8
41.7
41.8 | 46.6
43.7
41.1
41.5
42.6 | 38.9
40.6
41.1 | 42.7
40.7
37.8 | 42.
40.
38. | | 3 39.
7 35. | 6 39
3 38
2 39 | 9.7 3
8.7 3
5.2 3 | 8.5
5.1 | 33.2
39.0
38.6
36.8
34.7 | | 11
12 **
13 **
14
15 | 35.
37.
38. | 2 3 | 8.3
8.2
9.6 | 38.4
40.2
40.5
39.7
38.6 | 38.7
40.9
40.7 | 41.2
41.5
39.3
39.7
39.6 | 39.5
40.2
39.8 | 5
2
3 | 40.8
40.4 | 40.3
41.7
41.0 | 42. 2
41. 2 | | 39.7
40.5
40.7 | 42.0
41.3
41.6
43.2
39.8 | 42.8
45.8 | 45.1
43.1
43.6 | 44.5
44.2
41.3 | 42.6
43.7
42.3
41.3
42.9 | 42.7
38.8
40.1 | 41.6
38.2
38.7 | 38.
39. | 7 38.
7 38.
2 39. | 4 38. | 1 30
3 34
7 37 | 5.9 3
4.7 3
7.7 3 | 7.6
7.0 | 35.5
34.3
38.3
37.1
37.0 | | 16
17 *
18
19
20 * | 38.
38.
37.
36.
38. | 7 3
5 3
1 3 | 9.3
6.8
7.8 | 39. 1
38. 7
38. 7
39. 2
39. 1 | 39.0
38.7
40.4 | 39. 3
39. 4
39. 1
40. 7
39. 5 | 40.1
39.3
40.3 | l : | 38.7
39.4
39.8 | 39. 1
39. 7 | 38.7
38.7
39.7 | 38.3 | 38.8
41.1
39.5 | | 43.3 | 43.4
43.2
44.3 | 43.4
42.3
43.8 | 41.7
43.1
41.8
44.2
43.7 | 41.7
40.9
43.4 | 41.3
41.2
42.8 | | 1 40.
1 40.
2 40. | 2 39.
0 37.
6 39. | 5 38
9 39
7 38 | 3.8 3
9.2 3
3.8 3 | 8.3
7.7 | 38.7
37.4
35.2
38.8
38.0 | | 21 *
22
23 **
24
25 | 38.
39.
35.
37.
38. | 3 3
0 3
7 3 | 9.5
4.0
8.6 | 38.9
39.6
36.8
38.3
39.7 | 39.5
38.2
38.2 | 39.4
39.3
38.4
38.7
38.7 | 39.1
38.0
38.6 | l
) | 39. 2
38. 5 | 38.8
38.7
38.7
38.7
38.6 | 38.3
38.3
38.7
38.7 | 38.2
38.6
38.7 | 39.7
40.2
39.8 | 40.1 | 43.2
43.1
40.8 | 44.6
44.2
41.7 | 43.8
47.4
41.6 | 41.8
44.2
45.1
42.0
41.5 | 44.3
44.7
41.8 | 42.3
42.3
41.2 | 41.
40. | 2 39.
7 41.
2 39.
1 40.
1 41. | 6 39.
7 39.
4 39. | .7 39
.5 38
.7 36 | 9.2 3
8.2 3
5.7 3 | 8.7
8.4
7.4 | 39.1
33.6
36.8
36.9
38.7 | | 26
27
28
29
30 | 35.
37. | 3 3 2 3 0 3 | 6.1
8.5
7.4 | 37.5
36.1
39.7
38.2
39.2 | 39.6 | 37.1
38.7
39.2 | 38.1
38.8
39.0 | }
} | 39. 1
38. 7 | 39.2
38.1
38.8
38.7
39.0 | 38. 2
39. 3 | 38.2
38.9 | 42.2 | 40.9
41.9 | 42.7
42.7 | 43.2
43.6 | 42.8
43.2
44.7 | 42.1
41.6
42.2
42.7
42.0 | 40.7
41.0
42.9 | 41.9
40.5
42.4 | 39.
40. | 6 38.
9 40.
8 38.
2 38.
2 39. | 1 39.
8 38.
7 37. | 7 38
2 38
2 33 | 3.2 3
3.4 3
3.8 3 | 7.6
5.0
6.3 | 37.8
34.2
35.5
36.7
38.0 | | 31 * | 38. | 3 3 | 8.8 | 39.5 | 40.0 | 39.2 | 39.2 | ! : | 39.1 | 39.0 | 39.5 | 39.6 | 40.0 | 40.9 | 41.7 | 41.7 | 41.7 | 41.7 | 41.6 | 41.3 | 41. | 0 40. | 1 39. | 2 38 | 3.9 3 | 8.5 | 38.6 | | Mean * | | | | | 39.3
39.1 | | | | | | | 39.0
38.7 | | | | | | 42.8
42.5 | | | | 7 39.
9 40. | | | | | - | | Mean ★★ | 36. | 0 3 | 5.0 | 37.1 | 38.5 | 39.3 | 39.3 | | 40.3 | 40.2 | 40.0 | 39.9 | 40.8 | 42.5 | 44.4 | 44.7 | 44.7 | 43.8 | 42.3 | 40.4 | 39. | 7 38. | 1 37. | 1 35 | 5.1 3 | 4.8 | 35.9 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | TABL | E II. | - н | OURLY N | | | | | | PONENT | | | | NTENS | SITY | AT AB | INGER | | | | | |---------------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------| | U.T. 0 | h 1 | h 2 | h 3 | h 4 | h 5 | h | 6 ^h 7 | h 8 | h 9 | , ^h 1 | 0 ^h 1 | 1 h | 12 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h | 18 ^h | 19 ^h | 20 ^h | 21 ^h 2 | 2 ^h 2 | 3 h 24 h | | January | | | | | | | | | 18000 | γ+ | Tabu | lar Qı | ıantiti | es (1) | n y) | | | | | | | | | | | 1
2
3
4 **
5 ** | 587
583
585
570
573 | 588
583
584
565
569 | 591
583
587
572
563 | 599
583
587
571
571 | 601
588
589
569
573 | 599
593
585
572
577 | 600
597
585
573
590 | 598
597
593
571
583 | 593
587
588
567
580 | 592
578
578
557
561 | 579
573
566
554
557 | 571
572
571
562
560 | 579
576
568
552
562 | 573
582
565
570
567 | 569
576
560
577
565 | 568
564
561
540
567 | 577
539
563
545
566 | 587
560
561
555
555 | 58
58
53
55
55 | 0 58
9 54
0 55 | 5 584
2 552
4 574 | 587
571
576 | 581
588
582
571
551 | 587
589
572
567
560 | | 6
7
8
9 *
10 * | 567
571
577
582
589 | 569
573
578
581
588 | 570
581
581
586
589 | 568
583
578
587
589 | 569
577
582
589
591 | 570
576
582
591
593 | 572
575
582
592
595 | 560
583
585
592
593 | 555
573
575
587
591 | 552
560
572
579
586 | 548
553
575
569
581 | 542
547
574
568
577 | 541
554
577
568
580 | 546
563
577
569
581 | 540
567
572
571
582 | 558
570
573
573
587 | 553
568
579
577
591 | 557
576
582
583
597 | 55
57
58
58
59 | 1 58:
5 58: | 0 580
3 583
4 584 | 572
582
584 | 567
574
582
584
591 | 567
578
583
585
591 | | 11 *
12 *
13 *
14 | 587
590
591
583
589 | 588
590
590
589
586 | 591
591
593
587
587 | 593
592
592
587
589 | 597
594
595
589
591 | 599
597
597
594
598 | 602
596
601
597
595 | 603
597
597
597
597 | 602
593
592
589
585 | 596
587
581
578
572 | 588
583
570
572
563 | 581
583
571
574
567 | 586
587
577
582
574 | 584
587
583
587
577 |
585
588
590
585
583 | 589
591
597
587
583 | 591
594
597
581
591 | 593
597
597
585
593 | 59
59
59
58
59 | 8 59°
7 59°
9 59° | 7 597
7 597
1 593 | 597
592
597 | 591
592
584
593
568 | 590
591
586
592
571 | | 16 **
17
18
19
20 | 567
533
562
582
571 | 569
563
568
571
573 | 568
545
567
563
573 | 586
547
567
568
575 | 537
552
567
573
577 | 567
552
570
580
584 | 587
554
573
582
591 | 594
557
572
575
589 | 597
563
567
572
583 | 580
551
555
563
572 | 563
531
551
549
563 | 567
542
548
541
561 | 568
552
555
551
563 | 567
550
559
556
566 | 572
552
557
554
572 | 566
557
566
561
577 | 594
562
570
571
577 | 547
568
559
577
587 | 55
56
56
58
57 | 9 56
9 56
1 58
1 56 | 7 567
7 562
1 582 | 583
570
573 | 542
564
574
575
581 | 543
563
574
583
583 | | 21
22
23
24
25 ** | 575
582
577
587
582 | 585
582
577
588
581 | 580
587
576
589
587 | 576
587
577
591
617 | 576
589
581
592
611 | 587
589
586
593
569 | 587
593
587
596
551 | 583
593
587
557
531 | 585
584
587
559
517 | 577
575
583
563
510 | 571
568
573
551
488 | 566
561
571
544
473 | 571
562
573
542
496 | 575
573
582
548
513 | 570
582
582
556
514 | 569
585
583
573
543 | 576
581
581
574
517 | 582
567
583
574
527 | 58
57
58
57
51 | 0 57
6 58
1 56
7 51 | 1 577
3 574
1 563
7 493 | 575
580
571
495 | 587
585
581
575
502 | 583
584
587
583
500 | | 26 **
27
28
29
30 | 511
556
581
567
579 | 511
559
565
568
578 | 521
555
565
568
574 | 541
560
568
572
573 | 577
560
572
583
573 | 537
561
572
577
579 | 553
561
572
583
579 | 527
556
563
579
578 | 521
549
561
571
579 | 506
538
558
559
580 | 501
535
550
543
573 | 500
533
543
537
565 | 502
545
545
543
560 | 508
554
556
554
568 | 528
550
556
552
572 | 533
567
567
551
573 | 543
572
570
561
572 | 543
584
574
569
577 | 54-
56-
57-
57:
58- | 9 562
4 576
5 582
1 586 | 2 592
5 580
2 583
0 582 | 569
572
579
584 | 555
562
567
581
573 | 560
559
565
579
567 | | 31 | 562 | | | 577 | | | 579 | | | | 555 | | · | | | | 573 | | 579 | | | 583 | | | | Mean
Mean * | 574
588 | 575
587 | 576
590 | 579
591 | 581
593 | 581
595 | 583
597 | 580
596 | 575
593 | 567
586 | | 556
576 | 560
580 | 565
581 | 566
583 | 569
587 | 571
590 | 573
593 | 574
594 | 4 573
4 593 | | 574
591 | | 574
589 | | Mean ** | - | | | 577 | | | | | 556 | | | | - | | | | 553 | | | | | 538 | | | | February | | | | | | | | | 18000 | γ + | Tabu] | lar Qu | antitie | es (in | ι γ) | | | | | | | | | | | 1
2
3
4
5 | 587
584
580
597
583 | 582
584
579
606
582 | 580
585
581
594
582 | 580
584
582
584
584 | 586
587
582
583
585 | 591
591
584
588
587 | 589
590
590
599
587 | 588
587
592
607
587 | 572
581
593
597
584 | 563
571
590
577
577 | 554
561
570
564
567 | 551
553
553
554
568 | | | 570
567
558
557
582 | | 577
579
581
569
578 | 577
586
583
577
579 | 580
581
581
571
583 | 4 581
7 593
8 581 | 7 587
3 591
1 581 | 577
573
591
574
587 | | 586
578
594
590
582 | | 6
7
8 **
9 **
10 | 583
588
591
553
557 | 588
587
597
551
561 | 590
589
594
563
566 | 591
592
587
577
563 | 592
593
587
569
566 | 590
597
587
577
571 | 607
597
592
564
583 | 603
593
585
561
593 | 582
596
576
563
586 | 572
586
569
547
572 | 567
574
551
538
542 | 563
562
527
538
534 | 561
565
527
557
535 | 568
564
541
558
540 | 575
561
537
558
541 | 574
581
531
561
545 | 579
587
541
562
561 | 577
583
537
558
572 | 57
56
53
57
57 | 2 568
1 539
5 585 | 572
524
571 | 591
580
543
574
575 | 590
582
553
572
580 | 590
589
551
558
577 | | 11
12
13
14 *
15 * | 576
589
582
591
592 | 575
586
585
590
592 | 576
587
587
591
593 | 578
587
589
592
594 | 583
592
593
593
595 | 582
596
596
597
597 | 583
598
597
599
601 | 581
594
597
595
598 | 571
585
586
587
585 | 555
568
571
578
572 | 542
559
551
567
557 | 540
552
549
554
547 | 545
553
553
550
551 | 552
563
557
562
561 | 564
567
562
573
572 | 577
573
573
580
574 | 578
573
581
580
577 | 583
580
581
582
581 | 587
588
588
587
587 | 2 585
8 590
7 592 | 5 589
594
2 593 | 592 | 585
587
593
591
593 | 587
582
593
590
592 | | 16 **
17 **
18 .
19 **
20 | 592
479
566
561
586 | 591
537
551
562
564 | 593
537
556
561
574 | 619
532
558
560
584 | 621
518
562
563
582 | 615
563
563
565
570 | 619
547
557
562
564 | 620
519
553
577
562 | 597
507
547
570
557 | 565
505
541
556
552 | 524
503
533
549
551 | 492
501
536
540
551 | 464
507
543
541
554 | 476
501
549
542
554 | 491
513
554
560
561 | 472
523
553
558
563 | 472
531
557
544
565 | 504
538
563
560
571 | 512
555
569
542
573 | l 551
9 564
3 554 | 557
556
563 | 509
554
563
567
579 | 512
554
565
567
579 | 504
553
553
565
581 | | 21 *
22 *
23 *
24
25 | 581
587
592
587
594 | 580
585
588
593
593 | 583
587
589
593
592 | 583
587
593
599
594 | 583
589
593
602
597 | 583
592
593
607
597 | 587
593
592
609
602 | 583
588
591
607
603 | 573
583
583
599
594 | 557
577
574
586
574 | 546
570
563
570
562 | 539
565
557
563
552 | 547
572
561
552
549 | 561
579
569
565
542 | 571
587
577
579
554 | 575
587
581
582
563 | 576
587
586
589
572 | 579
587
586
593
579 | 581
589
590
582
583 | 9 591
9 592
2 574 | 592
590
584 | 584
591
591
592
584 | 586
592
590
598
583 | 587
591
589
597
585 | | 26
27
28 | 601
572
586 | 593
572
583 | 577
575
583 | 577
572
584 | 577
582
587 | 587
587
591 | 593
590
594 | 587
592
597 | 576
585
595 | 573
572
582 | 571
567
577 | 561
565
578 | 553
562
584 | 562
565
584 | 564
569
581 | 567
577
579 | 571
580
577 | 577
585
584 | 587
590
597 | | 594 | 585
592
586 | 586
590
589 | 579
590
592 | | Mean | 579 | 580 | 581 | 582 | 584 | 587 | 58 9 | 587 | 579 | 567 | 555 | 548 | 548 | 554 | 561 | 565 | 568 | 573 | 575 | 5 577 | 578 | 578 | 580 | 579 | | Mean * | 589 | 587 | 589 | 590 | 591 | 592 | | 591 | | 572 | | 552 | 556 | 566 | 576 | 579 | 581 | 583 | 587 | | | 590 | 590 | 590 | | Mean ** | 555 | 568 | 570 | 575 | 572 | | 577
Intern | | 563 | | | | | | | | 530 | 539 | 542 | 548 | 546 | 549 | 552 | 546 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | TABL | E II. | - HO | OURLY 1 | 1E ANS | OF F | HORIZ | ONTAI | COMI | PONENT | OF M | AGNE | ric i | NTENS | SITY A | T ABI | NGER | | | | · | |--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | U.T. | 0 ^h | 1 h | 2 ^h 3 | 3 ^h 4 | i ^h 5 | , h | 6 ^h 7 | ,h g | 3 ^h 9 |) ^h 1 | 0 ^h 1 | 1 h | 12 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h 1 | 8 ^h | 19 ^h 2 | 0 ^h 2 | 1 ^h 2 | 2 ^h 2 | 3 ^h 24 ^h | | March | | | | | | | | | 18000 | γ+ | Tabul | lar Qu | antitie | es (in | 1 Y) | -a | ··· | | | | | | | | | 1 *
2 **
3 **
4 | | 588
587
511
469
555 | 584
582
511
501
552 | 584
581
502
551
549 | 587
592
522
501
555 | 587
594
532
569
560 | 590
593
532
542
559 | 592
592
519
520
558 | 585
651
477
450
562 |
572
655
442
455
556 | 565
592
458
506
538 | 569
581
447
511
541 | 573
556
430
513
546 | 577
505
440
503
542 | 575
502
478
498
536 | 579
524
462
521
544 | 581
540
481
528
546 | 581
545
517
534
555 | 587
524
517
538
559 | 496
501
569 | 594
511
437
529
568 | 593
506
464
540
569 | 596
513
409
552
571 | 588
499
377
552
571 | | 6 *
7
8 **
9
10 * | 569
577
591
488
561 | 576
576
586
514
563 | 566
576
589
496
563 | 567
576
602
536
569 | 573
578
601
530
566 | 576
585
600
526
572 | 578
586
609
500
571 | 578
580
593
491
561 | 567
568
569
460
543 | 552
549
520
470
522 | 542
533
510
456
511 | 542
536
506
449
512 | 550
531
509
455
521 | 552
526
483
482
529 | 555
545
536
501
536 | 551
551
542
517
559 | 558
566
533
523
561 | 564
586
531
526
561 | 568
586
497
542
566 | 582
466
549 | 576
584
462
568
579 | 578
583
464
568
579 | 576
582
460
562
576 | 578
581
480
562
573 | | 11 *
12
13
14
15 ** | 575
591
587
602
580 | 574
589
587
591
578 | 573
588
586
593
572 | 576
593
582
596
571 | 579
597
591
609
572 | 580
618
591
604
561 | 580
613
597
603
560 | 576
606
585
605
538 | 557
589
576
592
500 | 541
565
566
574
469 | 531
551
557
562
470 | 530
548
556
558
506 | 528
548
547
552
539 | 543
559
558
534
529 | 553
584
569
553
489 | 565
569
573
576
521 | 570
566
581
579
533 | 573
579
585
550
489 | 578
583
596
575
521 | 605
577 | 582
590
596
572
531 | 581
589
603
576
529 | 581
586
602
570
529 | 581
588
600
572
547 | | 16
17
18
19
20 | 534
529
572
581
585 | 536
543
559
586
590 | 540
550
562
568
578 | 536
540
559
572
581 | 537
560
560
567
585 | 540
536
565
569
585 | 541
538
566
571
585 | 542
537
561
561
577 | 536
519
556
550
568 | 530
518
549
545
558 | 522
517
536
541
551 | 520
518
536
545
552 | 521
531
549
551
559 | 530
541
553
552
567 | 526
546
556
558
571 | 526
543
549
564
572 | 539
548
570
571
575 | 560
560
566
580
577 | 567
566
576
578
585 | 567
586
580 | 532
578
577
587
577 | 536
574
579
566
584 | 536
571
575
571
582 | 536
569
576
571
581 | | 21 *
22
23
24
25 | 581
575
590
575
581 | 578
579
593
577
578 | 576
585
586
585
578 | 585
611
584
578
582 | 581
619
588
552
579 | 589
627
588
608
575 | 584
599
588
581
572 | 578
572
588
562
561 | 571
563
585
555
552 | 558
541
570
539
531 | 552
551
570
531
535 | 561
559
575
530
541 | 564
560
577
545
540 | 577
568
559
560
549 | 586
569
572
567
562 | 578
553
569
572
569 | 575
576
567
569
570 | 580
571
540
572
571 | 587
573
550
570
579 | 578 | 593
580
555
575
588 | 590
585
560
575
584 | 576
587
573
588
582 | 570
588
573
585
592 | | 26
27
28 **
29
30 | 587
572
570
549
551 | 575
580
555
545
575 | 590
575
550
545
581 | 580
582
584
553
561 | 572
576
581
555
564 | 573
591
573
558
555 | 571
595
558
555
557 | 561
581
533
545
550 | 538
563
510
535
545 | 537
548
528
523
535 | 528
545
515
515
524 | 518
552
506
518
517 | 528
545
514
525
507 | 551
547
555
525
529 | 556
551
557
541
551 | 568
567
556
551
558 | 571
579
576
560
548 | 563
579
589
562
561 | 555
575
555
570
581 | 585
532
581
575 | 580
572
511
568
575 | 602
567
509
565
575 | 581
589
535
578
574 | 572
585
545
560
579 | | 31 | 580 | | | 559 | | | | | 555 | | ······································ | | | 529 | | | | | | 577 | | | | | | Mean
Mean * | 566
575 | 567
576 | | 570
576 | | | 573
581 | 564
577 | | 537
549 | 531
540 | 532
543 | 534
547 | 537
556 | 546
561 | 552
566 | | 561
572 | 564
577 | | 561
585 | 563
584 | 563
581 | 561
578 | | Mean ** | 561 | 563 | 561 | 568 | 574 | 572 | 570 | 555 | 541 | 523 | 509 | 509 | 510 | 502 | 512 | 521 | 533 | 534 | 523 | 505 | 490 | 494 | 489 | 490 | | April | | | | | | | | | 18000 | γ+ | Tabul | ar Qu | antitie | es (in | γ) | ····· | ······································ | | | | | | | | | 1 *
2
3
4
5 | | 570
585
591
585
570 | 569
586
595
583
567 | 568
588
609
585
566 | | 578
591
588
599
579 | | 579
597
591
600
571 | | 547
570
557
540
540 | 536
559
547
530
527 | | | 550
558
574
539
542 | 557
559
585
562
565 | 570
570
601
552
576 | | 587
585
589
574
589 | 590
586
595
562
581 | 587
592
601
575
581 | 590
591
609
573
589 | 595
595
605
579
591 | 593
595
602
565
591 | 590
594
599
561
595 | | 6
7
8
9 ** | 589
591
590
602
570 | 591
588
590
584
568 | 601
589
591
585
575 | 611
589
591
590
564 | 597
591
594
598
569 | 595
595
598
590
576 | 599
596
599
571
577 | 579
587
592
544
577 | 555
573
577
533
567 | 527
555
559
508
551 | 517
542
536
497
533 | 526
547
541
495
524 | 545
544
545
531
532 | 555
556
552
539
539 | 569
555
563
527
555 | 570
586
575
545
575 | 561
569
590
548
582 | 579
580
593
565
591 | 585
591
594
578
590 | 595
590
595
576
588 | 592
590
595
575
585 | 590
590
604
581
585 | 594
595
621
568
589 | 595
595
621
567
608 | | 11
12
13
14
15 | 596
574
576
590
598 | 578
572
580
590
588 | 572
578
595
586
572 | 575
580
578
590
584 | 575
578
580
595
590 | 585
581
582
591
602 | 579
579
588
587
599 | 572
570
581
582
587 | 560
555
569
584
578 | 545
538
559
581
559 | 537
536
546
565
549 | 536
535
545
561
555 | 538
540
559
566
555 | 557
557
568
584
565 | 581
561
587
585
586 | 590
577
583
595
602 | 599
582
595
590
608 | 591
595
595
595
589 | 582
592
595
609
594 | 587
592
596
599
604 | 585
595
596
604
603 | 587
596
604
592
590 | 590
596
593
589
591 | 582
586
585
589
590 | | 16
17 **
18 **
19 **
20 ** | | 595
572
514
545
575 | 597
581
507
551
579 | 578
589
509
546
583 | 583
585
515
555
595 | 585
592
525
561
574 | 584
587
534
558
588 | 576
588
527
537
579 | 570
579
516
539
574 | 565
567
509
529
547 | 561
561
505
511
535 | 558
565
485
514
536 | 550
609
476
538
536 | 558
611
508
535
538 | 569
574
535
535
555 | 579
666
560
557
561 | 573
599
529
582
569 | 589
602
527
581
597 | 598
637
545
577
585 | 595
625
565
575
582 | 582
527
565
575
575 | 588
460
549
580
578 | 586
516
541
588
581 | 589
496
551
584
579 | | 21 *
22 *
23 *
24 *
25 | 583
590
602
601
605 | 585
587
600
601
603 | 581
588
596
602
604 | 581
587
597
602
606 | 585
589
600
602
608 | 585
589
602
601
611 | 578
589
599
600
614 | 563
583
591
597
606 | 562
572
579
585
595 | 559
564
568
566
583 | 555
555
566
548
567 | 555
555
566
542
556 | 562
565
579
550
566 | 565
569
582
566
581 | 571
575
591
583
592 | 579
585
602
597
612 | 585
595
606
605
636 | 585
595
610
606
610 | 587
595
610
606
622 | 588
596
610
605
612 | 591
597
607
606
621 | 590
595
606
606
616 | 587
595
604
604
612 | 591
597
600
603
616 | | 26
27
28
29
30 | 614
596
601
592
605 | 616
596
598
590
604 | 606
597
591
592
597 | 601
600
595
594
599 | 606
600
589
600
600 | 604
606
598
602
606 | 605
615
606
604
600 | 608
610
600
600
592 | 606
602
584
594
579 | 600
580
576
582
562 | 586
556
564
560
551 | 576
549
561
568
557 | 580
556
573
590
574 | 580
566
580
571
572 | 587
581
579
582
578 | 608
572
592
582
582 | 609
591
600
592
594 | 616
606
600
598
600 |
613
604
600
599
615 | | 610
599
600
602
602 | 606
599
602
603
601 | 610
599
601
601
600 | 596
599
597
600
599 | | Mean * | 586 | 584 | 584 | 585 | 586 | 589 | 590 | 582 | 571 | 556 | 545 | 543 | 553 | 561 | 569 | 583 | 587 | 591 | 594 | | 591 | 589 | 590 | 588 | | Mean ** Mean ** | 589
560 | 589
558 | 587
561 | 587
563 | 589
570 | 591
568 | 589
568 | 583
555 | 572
548 | | 552
522 | 551
519 | 559
538 | 566
546 | 575
545 | 587
578 | 595
565 | 597
574 | 598
584 | 597
585 | 598
563 | 598
550 | 597
559 | 596
555 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | TABL | E II. | - н | OURLY 1 | Æ ANS | OF I | IORIZ | ONTAI | COMP | ONENT | OF M | AGNE | ric i | ntens | SITY A | T ABII | NGER | | | | | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | U.T. | 0 ^h | 1 h | 2 ^h : | 3 ^h 4 | i ^h 5 | 5 h | 6 ^h 7 | ,h | 8 ^h 9 |) ^h 1 | 0 ^h 1 | 1 ^h 1 | .2 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h 1 | 8 ^h 1 | 9 ^h 2 | 0 ^h 2 | 1 ^h 2 | 2 ^h 2: | 3 ^h 24 | | May | 7 | | | | | | | | 18000 | γ+ | Tabu: | lar Qu | antitie | es (in | η γ) | | | | | | | ···· | | | | 1
2 *
3
4
5 | 597
584
596
600
604 | 583
596
601 | 606
580
593
600
608 | 595
576
596
596
614 | 596
581
594
592
606 | 602
589
596
586
603 | 586
586
592
582
594 | 587
579
586
578
579 | 582
579
578
576
577 | 572
576
564
569
578 | 570
573
560
567
570 | 567
579
570
570
571 | 574
581
582
581
581 | 560
590
597
588
588 | 563
590
602
594
596 | 579
592
612
596
617 | 602
599
618
600
612 | 601
601
610
602
610 | 584
596
602
616
609 | 598
596
602
604
608 | 601
596
598
605
606 | 599
598
598
609
607 | 592
602
600
608
602 | 589
598
599
604
604 | | 6
7
8 *
9 *
10 * | 601
601
603
604 | 601
595
601
601
604 | 600
599
604
600
605 | 601
602
604
604
606 | 601
603
606
605
608 | 596
601
602
601
609 | 595
595
598
592
599 | 588
589
591
582
589 | 579
581
584
574
577 | 572
571
575
575
574 | 565
569
575
580
574 | 576
569
572
584
568 | 588
575
579
586
575 | 588
584
581
585
581 | 604
591
596
591
588 | 600
606
605
599
598 | 591
611
613
597
607 | 599
610
609
602
608 | 610
609
604
610
613 | 600
605
605
613
609 | 605
607
609
614
609 | 603
605
607
611
601 | 602
601
605
607
594 | 609
601
604
605
594 | | 11
12
13
14 **
15 ** | 594
593
604
574
591 | 594
598
588
555
589 | 596
619
589
569
592 | 599
588
592
564
585 | 596
594
590
574
589 | 594
585
585
576
594 | 587
571
587
578
585 | 578
560
590
567
583 | 574
557
594
569
574 | 571
554
596
578
549 | 565
561
590
559
567 | 569
554
581
574
575 | 568
559
567
564
577 | 570
570
564
562
587 | 580
586
573
556
576 | 599
594
594
553
554 | 610
604
611
567
576 | 621
610
629
574
593 | 628
609
623
590
603 | 618
610
627
612
604 | 604
611
610
606
622 | 598
608
614
598
612 | 591
596
586
603
601 | 591
598
586
589
594 | | 16 **
17
18
19
20 | 587
594
593
579
589 | 574
591
599
577
590 | 580
574
588
582
590 | 573
587
578
584
591 | 556
584
579
580
592 | 574
580
585
578
588 | 548
568
580
561
576 | 541
570
568
549
561 | 554
568
560
549
558 | 552
556
569
554
570 | 524
563
577
564
577 | 532
570
578
558
566 | 542
561
576
562
564 | 563
554
574
571
577 | 557
582
594
556
589 | 564
607
596
569
598 | 583
604
614
592
594 | 601
615
648
608
596 | 598
615
640
607
599 | 608
608
614
603
608 | 600
608
590
605
613 | 600
618
594
603
608 | 600
598
594
598
608 | 594
594
601
589
610 | | 21
22
23 **
24 **
25 | 604
600
628
610
566 | 608
597
630
609
574 | 605
601
627
621
572 | 607
604
627
619
572 | 604
608
608
620
569 | 594
602
611
608
569 | 584
595
631
604
559 | 571
587
624
568
549 | 576
577
601
447
535 | 579
568
584
527
522 | 584
568
564
551
518 | 584
569
556
534
529 | 580
570
559
511
532 | 571
567
570
523
547 | 584
576
588
533
576 | 601
586
617
546
592 | 608
597
623
577
601 | 609
609
614
581
600 | 607
612
616
594
609 | 617
614
617
586
609 | 620
618
621
577
603 | 619
614
616
578
602 | 611
617
612
584
593 | 610
631
609
573
591 | | 26
27
28
29
30 * | 587
598
605
617
590 | 582 | 599
607
594
608
582 | 606
602
597
609
584 | 600
605
603
612
588 | 604
601
600
611
583 | 601
597
593
610
573 | 580
574
585
608
559 | 566
570
576
598
548 | 553
559
564
595
543 | 547
552
558
580
543 | 529
556
553
575
543 | 524
546
561
574
549 | 528
547
577
570
556 | 544
549
585
588
563 | 574
574
574
649
580 | 580
598
604
631
593 | 620
622
629
610
599 | 619
601
623
602
605 | 621
608
616
590
603 | 614
605
612
590
607 | 619
608
616
594
607 | 630
604
619
594
604 | 610
604
614
590
600 | | 31 | 603 | | | 599 | 604 | | 593 | | 573 | | 586 | · · · · · · · · · · · · · · · · · · · | 604 | | 620 | | 627 | | 613 | 646 | 630 | 604 | 601 | | | Mean
Mean * | 597
596 | | 597
594 | 595
595 | 595
598 | 594
597 | 587
590 | 578
580 | 568
572 | 566
569 | 565
569 | 565
569 | 566
574 | 571
579 | 580
586 | 592
595 | 601
602 | 608
604 | 609
606 | 609
605 | 607
607 | 605
605 | 602
602 | 600
600 | | Mean ** | 598 | 591 | 598 | 594 | 589 | 593 | 589 | 577 | 549 | 558 | 553 | 554 | 551 | 561 | 562 | 567 | 585 | 593 | 600 | 605 | 605 | 601 | 600 | 592 | | June | | | | | | | | | 18000 | Υ + | Tabul | ar Qu | antitie | es (in | γ) | | | | | | | | | | | 1 **
2 *
3
4
5 ** | 627
592
603
610
612 | 609
592
597
609
614 | 587
592
600
609
614 | 590
592
598
610
613 | 572
592
598
610
611 | 589
583
602
606
609 | 573
572
592
593
605 | 544
562
582
582
581 | 530
552
573
574
554 | | 519
551
566
583
611 | 533
551
573
586
598 | 537
555
576
598
587 | 539
561
586
606
596 | 559
568
592
616
590 | 570
575
593
617
606 | 579
593
596
629
622 | 583
597
601
622
667 | 590
597
608
606
674 | 592
598
613
616
642 | 588
601
613
618
638 | 590
606
609
612
632 | 589
612
609
610
613 | 591
606
608
611
582 | | 6
7
8
9
10 | 563
592
570
586
593 | 564
589
578
584
592 | 562
595
592
592
600 | 567
599
566
599
588 | 572
597
578
576
590 | 564
593
566
572
598 | 555
578
560
565
584 | 547
565
552
566
577 | 546
552
548
562
567 | 546
547
540
548
554 | 552
568
538
529
543 | 557
575
541
524
557 | 566
576
546
527
564 | 572
564
553
544
577 | 578
572
574
562
578 | 584
602
575
583
582 | 589
607
576
600
592 | 592
606
614
614
602 | 601
602
604
609
612 | 596
616
605
612
620 | 596
617
595
610
616 | 598
622
598
604
596 | 592
596
593
587
596 | 588
576
592
592
592 | | 11
12 *
13
14 ** | 594
596
585
602
592 | 594
599
593
587
578 | 586
601
595
595
574 | 591
601
595
566
593 | 589
597
595
567
589 | 588
587
592
568
578 | 590
589
584
558
565 | 574
595
581
560
556 | 565
592
576
532
555 | 564
585
573
498
547 | 558
581
571
517
542 | 556
582
568
533
540 |
559
580
559
528
564 | 576
584
560
537
557 | 596
598
578
537
567 | 608
612
583
552
583 | 606
612
595
567
590 | 610
622
617
594
605 | 626
634
646
610
608 | 608
623
626
618
606 | 605
606
621
620
610 | 600
608
638
604
608 | 598
598
624
599
605 | 598
593
613
604
597 | | 16 *
17 **
18
19
20 | 600
614
592
604
601 | 596
614
594
597
598 | 591
612
596
594
598 | 594
627
602
594
605 | 595
605
598
594
607 | 595
625
590
612
604 | 588
602
582
597
588 | 583
586
582
579
571 | 576
562
578
559
560 | 564
567
567
548
548 | 560
564
567
556
552 | 563
549
574
568
563 | 582
555
585
572
575 | 587
568
592
588
582 | 589
579
587
608
586 | 597
577
598
622
609 | 596
577
598
618
609 | 602
643
599
592
618 | 614
617
614
609
622 | 610
648
628
612
619 | 612
606
612
609
622 | 610
605
615
609
622 | 612
596
620
611
619 | 618
597
612
616
616 | | 21
22
23
24
25 ** | 613
612
628
614
617 | 616
617
616
608
607 | 617
622
614
608
602 | 620
621
616
611
614 | 622
622
621
612
614 | 614
617
618
609
584 | 602
608
608
600
597 | 582
597
604
592
586 | 558
578
581
577
566 | 546
568
568
574
567 | 556
566
573
570
556 | 568
572
578
578
552 | 579
577
575
583
575 | 586
594
576
576
551 | 588
594
608
582
554 | 597
609
632
583
574 | 605
626
622
602
585 | 619
646
610
624
603 | 612
617
615
618
617 | 618
622
605
623
614 | 628
632
605
622
616 | 622
640
608
618
609 | 622
622
609
616
596 | 612
622
609
618
589 | | 26
27 *
28
29 * | 587
586
606
612
616 | 587
599
605
610
596 | 585
600
600
608
596 | 594
597
602
603
603 | 605
605
607
605
607 | 605
605
606
598
606 | 611
594
601
590
580 | 597
584
595
585
578 | 586
579
581
582
581 | 574
575
564
576
571 | 567
576
561
572
577 | 550
571
563
571
581 | 560
568
569
574
581 | 571
578
594
577
578 | 566
586
601
584
581 | 575
591
607
594
587 | 571
591
608
605
596 | 599
600
611
610
607 | 597
610
621
619
602 | 609
621
615
624
616 | 607
617
618
621
622 | 616
616
617
622
620 | 601
610
613
618
616 | 584
608
611
617
614 | | 30 | Mean * | 601
597 | 598
599 | 598
598 | 599
597 | 598
599 | 596
594 | 587
587 | 578
582 | 566
576 | 559
570 | 560
568 | 563
568 | 568
572 | 574
577 | 582
585 | 593
594 | 599
599 | 611
606 | 614
615 | 616
615 | | 612
612 | 607
610 | 603
608 | ^{*} International Quiet Day. ** International Disturbed Day. | The color of | | | | | TABLE | E II. | - но | OURLY M | ŒANS | OF H | ORIZ | ONTAL | COMP | ONENT | OF M | AGNET | ic i | NTENS | SITY | AT ABII | NGER | | | | | |--|----------------------|--------------------------------| | 1 | U. T. | 0 ^h 1 | h a | 2 ^h 3 | h 4 | h 5 | h | 6 ^h 7 | ,h e | 3 h 9 | ,h 1 | 0 ^h 1 | 1 ^h 1 | 2 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h | 18 ^h 1 | 9 ^h 2 | 0 ^h 2 | 1 ^h 2 | 2 ^h 2 | 3 ^h 24 ^h | | 2 | July | | | | | | | | | 18000 | Y + | Tabu] | lar Qu | antitie | s (i | 1 y) | | | | | | | | | | | 7 644 666 687 698 611 607 328 698 612 607 328 698 613 607 328 698 613 617 618 618 618 618 618 618 618 618 618 618 | 2
3 *
4 * | 597
600
602 | 596
601
601 | 610
601
601 | 611
604
605 | 611
606
608 | 606
597
606 | 596
582
596 | 579
574
587 | 569
567
581 | 566
568
575 | 570
565
569 | 565
571
566 | 571
574
574 | 581
577
589 | 591
584
606 | 631
605
614 | 634
597
611 | 596
614
608 | 606
611
609 | 616
612
609 | 621
614
610 | 627
611
613 | 612
609
612 | 606
605
610 | | 11 5 609 609 509 509 509 509 509 509 509 509 509 5 | 7
8
9 | 614
601
600 | 606
501
599 | 602
605
600 | 606
605
606 | 613
609
613 | 605
612
613 | 596
610
605 | 590
604
593 | 585
593
581 | 575
584
569 | 569
569
566 | 570
560
565 | 574
564
565 | 589
576
575 | 603
590
590 | 610
614
606 | 604
619
615 | 624
627
619 | 640
642
634 | 642
623
626 | 625
621
627 | 620
615
608 | 615
611
606 | 600
616
610 | | 17 ## 622 | 12
13 | 592
599
603 | 594
595
605 | 602
589
600 | 609
589
598 | 595
596
599 | 592
591 | 592
589
579 | 581
576
571 | 566
574 | 563
559
581 | 553
552
579 | 559
549
579 | 582
565
584 | 594
588
590 | 599
583
592 | 597
614
605 | 603
612
624 | 615
624
615 | 623
620
622 | 603
610
625 | 610
616
617 | 606
609
606 | 603
607
604 | 601
599
603 | | 22 *** 596 593 597 600 602 599 598 596 597 578 578 578 578 578 578 578 578 578 57 | 17 **
18 ** | 622
563
559 | 618
586
546 | 616
592
554 | 617
600
573 | 616
619
569 | 614
602
573 | 607
582
558 | 591
576
562 | 581
566
537 | 573
553
507 | 575
553
493 | 590
541
529 | 591
547
539 | 597
592
536 | 600
589
552 | 613
540
571 | 633
575
589 | 663
623
605 | 801
641
604 | 739
600
596 | 694
553
605 | 620
562
593 | 588
576
589 | 549
585
589 | | 27 | 22
23 **
24 | 596
597
598 | 593
596
594 | 587
594
593 | 600
599
591 | 605
595
589 | 599
606
601 | 595
588
601 | 586
574
582 | 566
565
572 | 557
543
555 | 567
540
546 | 571
542
547 | 564
559
564 | 590
571 | 579
553
588 | 577
583
613 | 601
579
619 | 612
600
604 | 618
606
603 | 625
613
610 | 614
621
618 | 605
613
610 | 601
595
609 | 595
592
607 | | Mean # 600 598 598 600 602 601 591 581 573 565 560 561 567 577 586 600 608 613 622 618 615 609 604 600 608 mean # 602 602 601 604 607 602 591 582 576 575 573 575 580 587 597 610 613 612 613 612 616 615 612 609 606 608 mean # 587 588 588 584 594 596 596 581 569 581 544 537 541 553 565 569 579 585 612 649 629 615 596 587 578 578 578 578 578 578 578 578 578 | 27
28 | 595
604
599 | 600
599
594 | 596
599
598 | 599
599
589 | 600
599
589 | 596
598
577 | 590
592
578 | 591
583
579 | 584
569
566 | 583
559
549 | 570
561
535 | 556
559
543 | 564
569
561 | 570
587
582 | 574
596
594 | 588
606
595 | 584
612
599 | 597
614
594 | 616
615
604 | 601
604
603 | 605
603
595 | 602
606
595 |
599
602
594 | 601
597
592 | | Hean * 602 602 601 604 607 602 591 582 576 575 573 575 580 587 597 610 613 612 613 616 615 612 609 606 Hean *** ******************************** | 31 | 608 | 607 | 600 | 600 | 599 | 598 | 601 | 597 | 586 | 579 | 578 | 578 | 578 | 572 | 590 | 611 | 622 | 617 | 608 | 612 | 626 | 620 | 617 | 600 | | Hean ** 587 588 588 594 596 596 581 569 561 544 537 541 533 565 569 579 585 612 649 629 615 596 587 788 | | | | | | | | | • | | | | | | | | | | | | | | | - | | | 1 598 613 603 590 597 588 569 577 563 551 544 573 582 587 596 614 600 606 614 620 622 604 601 598 593 595 590 597 599 588 586 579 579 596 549 583 594 586 597 597 598 608 597 599 588 586 579 579 596 649 589 597 599 598 698 597 599 588 586 579 579 596 649 589 597 598 698 597 599 598 698 597 599 598 698 597 599 598 698 599 599 599 599 599 599 599 599 599 5 | | | | | | • | - | | - | - | | | | | | | - | | | - | | | | | | | 2 598 597 600 597 599 598 592 578 572 566 561 568 584 586 584 586 594 604 619 594 602 616 617 598 593 385 593 595 595 596 596 596 596 596 549 543 553 562 571 577 588 598 598 597 598 603 609 609 600 600 597 590 581 577 570 578 578 578 588 588 504 610 600 600 610 611 600 600 600 600 600 | August | | | | | | | | | 18000 | Y + | Tabul | ar Qu | antitie | s (ir | γ) | | | | | | | | | | | 7 615 603 608 602 602 602 604 598 587 560 553 555 562 568 578 584 594 607 617 607 618 608 608 602 9 8 * 608 618 595 596 602 601 594 588 574 560 552 555 566 569 574 588 594 600 603 604 609 608 608 608 9 9 * 603 601 604 611 608 607 607 597 587 574 558 574 580 572 576 570 576 580 597 10 10 * 609 607 605 603 604 606 599 597 587 574 578 581 510 500 500 500 500 500 500 500 500 50 | 2
3
4 | 598
593
603 | 597
595
603 | 600
598
600 | 597
597
600 | 599
593
597 | 598
588
590 | 592
586
581 | 578
579
575 | 572
569
570 | 566
556
568 | 561
549
552 | 568
543
558 | 584
553
563 | 586
562
568 | 596
571
578 | 594
574
598 | 604
583
598 | 619
600
597 | 594
613
598 | 602
620
603 | 616
609
609 | 617
608
609 | 598
608
606 | 593
601
600 | | 12 607 628 621 594 993 567 561 557 542 540 540 540 540 540 540 540 540 540 540 | 7
8 *
9 * | 615
608
603 | 603
618
601 | 608
595
604 | 602
596
611 | 602
602
608 | 604
601
607 | 598
594
607 | 587
588
597 | 569
574
587 | 553
560
566 | 555
552
554 | 562
555
553 | 568
556
562 | 578
569
572 | 584
574
578 | 594
588
597 | 607
594
607 | 617
600
617 | 607
603
615 | 618
604
613 | 608
609
613 | 608
608
617 | 602
608
600 | 608
604
597 | | 17 | 12
13
14 | 607
591
578 | 628
591
586 | 621
595
607 | 594
594
586 | 593
598
588 | 567
586
585 | 561
572
585 | 557
568
580 | 542
558
573 | 540
553
564 | 543
552
560 | 541
561
563 | 549
568
570 | 546
556
570 | 565
576
566 | 562
598
581 | 580
639
595 | 588
582
596 | 589
606
583 | 595
609
593 | 609
596
600 | 605
600
598 | 593
600
603 | 583
579
602 | | 22 ** 588 588 594 588 600 594 600 580 550 426 385 450 458 465 471 516 524 565 579 569 555 550 564 23 ** 600 575 542 524 544 538 539 530 518 513 511 500 520 541 610 564 561 590 581 564 568 566 569 382 24 588 571 564 565 578 574 557 548 539 528 529 532 554 546 550 555 567 577 578 601 580 574 583 578 25 580 594 588 570 576 564 562 559 520 511 519 540 557 574 549 565 550 580 597 596 595 595 604 589 595 595 604 589 595 595 595 604 589 595 595 604 589 595 595 595 604 589 595 595 595 604 589 595 595 595 604 589 595 595 595 604 589 595 595 595 604 589 595 595 595 604 589 595 595 595 595 595 604 589 595 595 595 595 595 604 589 595 595 595 604 589 595 595 595 595 604 589 595 595 595 595 595 604 589 595 595 595 595 595 595 595 595 595 | 17
18 **
19 | 573
562
574 | 571
561
571 | 585
551
573 | 578
577
577 | 575
559
577 | 579
564
587 | 555
572
584 | 531
539
559 | 509
514
539 | 509
477
529 | 519
492
504 | 497
516
524 | 501
484
509 | 519
514
514 | 530
540
558 | 531
550
587 | 544
553
523 | 568
540
558 | 605
594
577 | 575
575
579 | 565
570
586 | 594
574
579 | 571
574
591 | 564
591
567 | | 27 609 590 599 588 585 589 574 549 559 560 566 562 568 570 573 569 579 586 591 590 592 591 591 588 28 586 584 590 591 590 594 596 589 582 572 572 580 589 592 600 591 584 606 602 607 614 602 596 580 29 607 584 598 599 586 580 574 559 552 548 556 565 568 576 578 601 587 588 599 606 610 606 601 596 30 * 595 593 595 601 596 586 576 569 562 552 546 555 566 572 576 583 590 584 588 592 599 599 602 602 31 600 596 596 592 592 596 590 581 566 566 571 580 586 581 581 579 605 619 606 598 600 593 591 588 Mean * 603 604 600 603 603 599 593 585 575 562 554 555 563 572 577 587 598 603 605 607 610 611 606 603 | 22 **
23 **
24 | 588
600
588 | 588
575
571 | 594
542
564 | 588
524
565 | 600
544
578 | 594
538
574 | 600
539
557 | 580
530
548 | 550
518
539 | 426
513
528 | 385
511
529 | 450
500
532 | 458
520
554 | 468
541
546 | 465
610
550 | 471
564
555 | 516
561
567 | 524
590
577 | 565
581
578 | 579
564
601 | 569
568
580 | 555
566
574 | 550
569
583 | 564
582
578 | | Mean \$ 590 589 589 587 588 584 578 568 555 542 537 544 552 560 569 576 582 587 595, 597 599 596 591 588 Mean * 603 604 600 603 603 599 593 585 575 562 554 555 563 572 577 587 598 603 605 607 610 611 606 603 | 27
28
29 | 609
586
607 | 590
584
584 | 599
590
598 | 588
591
590 | 585
590
586 | 589
594
580 | 574
596
574 | 549
589
559 | 559
582
552 | 560
572
548 | 566
572
556 | 562
580
565 | 568
589
568 | 570
592
576 | 573
600
578 | 569
591
601 | 579
584
587 | 586
606
588 | 591
602
599 | 590
607
606 | 592
614
610 | 591
602
606 | 591
596
601 | 588
580
596 | | Mean * 603 604 600 603 603 599 593 585 575 562 554 555 563 572 577 587 598 603 605 607 610 611 606 603 | 31 | 600 | 596 | 596 | 592 | 592 | 596 | 590 | 581 | 566 | 566 | 571 | 580 | 586 | 581 | 581 | 579 | 605 | 619 | 606 | 598 | 600 | 593 | 591 | 591 | | Mean this | Mean
Mean * | - | | | Mean ** | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | | TABL | E II. | - н | OURLY N | IEANS | OF F | IOR I Z | ONTAI | COMP | ONENT | OF M | AGNET | ric i | NTENS | SITY A | T ABII | 1GER | | | | | |--------------------------------------|----------------|---------------------------------| | U. T. | o ^h | 1 | h 2 | h 3 | 3 h 4 | h s | , h | 6 ^h 7 | ,h g | 3 ^h 9 |) ^h 1 | 0 ^h 1 | 1 ^h 1 | 2 ^h 1 | 3 h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h 1 | 8 ^h 1 | 9 ^h 2 | 0 ^h 2 | 1 h 2 | 2 ^h 2 | 3 ^h 24 ^l | | Septemt | er | | | | | | | | | 18000 |) Y + | Tabu: | lar Qu | antitie | es (ir | ι γ) | | | | | | | | | | | 1 *
2
3 *
4
5 | ·
·* | 594
599
612
566
577 | 600
600
607
574
563 | 599
598
611
550
574 | 593
597
614
546
572 | 591
596
604
547
573 | 581
596
585
552
577 | 572
582
596
513
570 | 559
565
580
520
544 | 548
546
519
511
530 | 552
542
488
501
519 | 563
549
471
512
509 | 576
568
500
519
529 | 582
582
518
531
546 | 590
593
503
557
540 | 593
601
506
567
552 | 598
600
531
578
565 | 601
602
552
586
571 | 605
606
580
600
576 | 613
609
581
583
595 | 616
612
542
571
601 | 601
612
554
578
611 | 596
612
549
575
616 | 603
606
585
574
608 | 601
607
592
579
595 | | 6
7
8
9 *
10 * | | 599
572
566
586
587 | 598
578
574
575
581 | 584
586
559
576
580 | 583
582
566
580
582 | 583
578
572
582
588 | 579
582
570
585
587 | 566
571
571
581
585 | 554
542
578
576
576 | 546
530
576
567
563 | 547
523
570
558
552 | 548
513
556
548
545 | 561
511
550
546
545 | 569
529
552
550
551 | 573
526
559
556
560 | 576
566
554
568
568 | 600
575
563
577
576 | 618
587
570
589
586 | 583
589
571
595
593 | 582
602
579
600
600 | 570
598
586
600
600 | 578
551
586
596
604 | 584
534
586
586
609 | 576
543
586
586
607 | 583
568
582
586
605 | | 11
12
13
14 *
15 * | | 601
600
550
571
551 | 599
598
547
591
557 | 600
599
579
575
554 |
602
597
595
564
559 | 601
600
590
570
565 | 602
601
594
591
566 | 595
604
563
573
559 | 586
593
519
535
514 | 577
567
509
536
510 | 566
552
491
519
510 | 564
558
492
475
491 | 566
568
476
470
502 | 557
572
491
489
522 | 548
580
489
505
516 | 569
580
490
522
523 | 567
582
521
510
546 | 630
591
529
530
527 | 576
592
556
557
565 | 569
591
561
552
551 | 582
589
563
573
564 | 583
573
579
556
575 | 589
561
559
561
553 | 601
554
576
575
565 | 600
548
564
569
569 | | 16
17
18
19
20 | | 573
583
565
577
586 | 580
575
572
571
568 | 574
589
565
571
579 | 573
576
589
571
579 | 574
586
599
587
581 | 560
565
586
581
578 | 549
553
562
559
582 | 539
565
550
557
581 | 555
545
529
539
571 | 550
536
524
529
554 | 541
529
509
525
535 | 539
516
514
519
530 | 547
525
525
537
540 | 559
547
524
547
545 | 569
562
555
549
561 | 571
561
555
565
565 | 571
551
569
562
580 | 585
539
585
587
589 | 562
575
589
589
580 | 575
553
581
596
580 | 573
564
605
605
588 | 585
549
581
586
585 | 559
559
579
582
582 | 563
571
562
585
572 | | 21
22
23
24 *
25 * | * | 579
586
580
605
480 | 580
587
571
588
439 | 584
585
568
595
486 | 581
585
579
594
530 | 599
588
580
599
549 | 609
602
615
597
485 | 598
580
609
593
435 | 598
579
569
573
428 | 574
569
558
554
473 | 559
522
535
533
492 | 545
507
515
518
505 | 533
511
516
508
493 | 535
531
530
521
478 | 535
535
537
541
532 | 538
523
542
599
552 | 552
544
548
600
541 | 565
560
561
595
542 | 571
575
571
549
542 | 588
585
579
531
536 | 576
582
585
501
552 | 580
575
590
456
557 | 566
561
595
455
547 | 588
568
591
448
531 | 598
575
597
455
538 | | 26
27
28 *
29 *
30 | : | 555
570
576
584
585 | 559
570
585
587
583 | 565
579
581
587
588 | 546
561
579
586
589 | 552
563
575
585
581 | 556
567
570
580
580 | 552
563
566
577
579 | 540
557
562
575
572 | 531
549
551
565
559 | 522
544
546
557
549 | 518
541
532
552
543 | 530
551
538
541
535 | 544
565
549
543
535 | 558
584
568
548
542 | 557
579
577
552
554 | 560
579
577
556
563 | 560
575
585
571
573 | 565
575
585
579
581 | 570
580
589
578
604 | 579
584
593
580
615 | 578
585
587
585
591 | 575
580
595
575
590 | 580
579
584
572
594 | 571
571
584
585
590 | | Mean | | 577 | | 577 | | | 579 | | | 545 | | | | | | | | 573 | | 580 | 580 | | 573 | | 576 | | Mean * Mean * | | 585
564 | 586
556 | 585
564 | 584
572 | 584
577 | 581
565 | 576
551 | 570
526 | 559
518 | 553
508 | 548
492 | 549
495 | 555
506 | 564
519 | 572
540 | 577
546 | 586
549 | 591
559 | 596
550 | 598
546 | 595
540 | 592
533 | 590
541 | 592
545 | | Octobe | r | | | | | | | | | 18000 | γ+ | Tabu] | Lar Qua | antit1e | s (in | γ) | | | | | | | | | | | 1
2 *
3
4
5 | * | 586
553
517
559
577 | 585
543
539
563
579 | 585
540
536
566
579 | 590
551
547
570
581 | 592
581
564
575
581 | 585
569
561
572
585 | 596
545
544
571
583 | 559
535
543
561
569 | 545
525
521
543
553 | 543
498
492
528
539 | 539
489
479
512
535 | 520
496
475
514
533 | 535
499
505
519
547 | 565
519
532
539
558 | 575
535
539
555
572 | 574
575
545
561
577 | 584
554
547
569
584 | 588
555
554
575
590 | 595
550
565
580
591 | 603
515
571
583
592 | 561
529
572
583
592 | 565
509
594
581
590 | 556
542
575
579
589 | 545
500
560
580
595 | | 6
7
8
9 *
10 * | | 595
589
577
583
541 | 591
591
577
607
565 | 589
590
579
592
558 | 588
591
582
592
553 | 590
595
592
587
569 | 593
595
600
599
553 | 589
597
597
589
561 | 579
593
594
590
541 | 560
580
577
579
509 | 541
550
558
555
506 | 533
532
556
531
512 | 523
535
545
508
508 | 535
539
551
506
507 | 549
548
561
491
475 | 559
558
561
507
495 | 571
570
551
550
506 | 580
589
569
561
525 | 591
594
581
532
540 | 597
572
576
525
550 | 600
584
580
506
535 | 597
578
590
532
505 | 589
578
595
552
551 | 590
582
597
532
551 | 592
583
589
529
561 | | 11
12 *
13
14
15 * | | 562
556
578
562
563 | 550
549
575
563
563 | 549
586
582
571
568 | 557
551
584
571
575 | 554
568
580
576
572 | 554
558
592
575
582 | 558
541
578
565
565 | 532
543
561
562
581 | 528
535
554
551
565 | 530
522
549
519
550 | 521
507
543
487
540 | 519
512
532
501
529 | 539
520
536
515
487 | 525
530
541
505
526 | 532
523
548
522
535 | 545
540
555
531
558 | 552
555
573
562
548 | 535
551
551
554
540 | 535
551
553
569
545 | 546
574
567
576
560 | 568
541
562
550
564 | 531
560
577
542
580 | 528
573
569
545
657 | 528
581
552
580
565 | | 16
17
18
19
20 | | 579
590
581
575
577 | 568
579
582
579
584 | 569
575
579
584
588 | 569
585
580
591
578 | 582
589
584
581
584 | 585
591
589
584
575 | 574
580
586
592
567 | 571
562
589
584
566 | 561
544
567
559
551 | 546
539
541
537
539 | 525
530
545
525
531 | 506
535
545
540
530 | 528
539
549
549
532 | 534
537
555
531
537 | 545
542
559
553
556 | 561
550
553
558
560 | 561
565
570
552
568 | 566
565
569
558
576 | 565
570
569
541
572 | 571
564
555
568
577 | 579
572
560
555
579 | 581
580
575
557
582 | 580
585
572
565
579 | 585
585
580
575
599 | | 21
22
23
24
25 | | 561
585
585
583
589 | 568
599
584
605
582 | 575
590
584
584
580 | 572
589
589
589
583 | 575
585
591
574
583 | 583
593
590
575
585 | 573
590
598
575
586 | 565
582
585
575
583 | 555
569
574
571
576 | 548
559
559
553
565 | 545
555
549
549
555 | 541
551
528
554
555 | 536
545
530
550
559 | 547
551
540
551
569 | 559
555
553
558
575 | 565
569
553
567
579 | 562
573
562
575
585 | 563
584
570
589
588 | 575
589
557
596
592 | 581
589
561
601
592 | 582
590
561
600
585 | 589
590
576
585
594 | 591
592
585
579
595 | 589
589
581
577
591 | | 26 *
27 *
28 *
29 *
30 * | | 590
594
600
600
599 | 589
593
597
599 | 589
593
599
601
599 | 589
592
598
602
601 | 590
595
599
602
601 | 591
595
599
604
603 | 585
591
595
601
602 | 585
583
588
596
602 | 570
570
575
586
593 | 552
560
562
572
584 | 545
557
563
569
575 | 553
562
565
572
578 | 561
573
568
580
583 | 571
584
575
586
587 | 582
591
586
589
591 | 585
593
587
590
588 | 590
595
591
599
598 | 595
596
595
601
591 | 595
598
599
592
598 | 599
600
601
601
598 | 596
602
605
601
599 | 598
603
605
601
601 | 598
604
606
603
605 | 594
601
605
601
601 | | 31 | ···· | 602 | 603 | 601 | 603 | 600 | 599 | 595 | 598 | 587 | 580 | 580 | 586 | 585 | 583 | 595 | 595 | 599 | 599 | 599 | 599 | 600 | 598 | 589 | 589 | | Mean * | | 577
597 | 579
595 | 579
596 | 580
596 | 584
597 | 584
598 | 580
595 | 573
591 | 559
579 | 544
566 | 536
562 | 534
566 | 5 3 9
573 | 545
581 | 555
588 | 563
589 | 571
595 | 572
596 | 573
596 | 576
600 | 574
601 | 578
602 | 580
603 | 577
600 | | Mean ★ | * | | 565 | | | 575 | | 560 | 558 | 543 | | 516 | | 504 | 508 | 519 | 546 | 549 | 544 | 544 | 538 | | 550 | - | | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | | TABL | E II. | - н | OURLY 1 | 1E ANS | OF I | ioriz | ONTAI | COMP | ONENT | OF M | AGNE | ric i | NTENS | SITY A | T ABI | NGER | | | | | |----------------------------|------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------
---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | U.T. | . o ¹ | 1 | h 2 | h 3 | h 4 | h 5 | h | 6 ^h 7 | h 8 | s h 9 | h 1 | 0 ^h 1 | 1 ^h 1 | 2 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h 1 | 8 ^h 1 | 9 ^h 2 | 0 ^h 2 | 1 ^h 2: | 2 ^h 2 | 3 ^h 24 ^h | | Novemb | ber | | | | | | | | | 18000 | y + | Tabu] | ar Qu | antitie | es (in | ι γ) | | | | | | | | | | | 1
2
3
4
5 | * | 599
589
596
605
593 | 596
593
596
589
591 | 595
593
598
589
590 | 595
605
598
592
595 | 599
605
599
595
592 | 599
595
600
598
597 | 596
595
600
599
595 | 590
590
597
594
591 | 583
576
586
585
581 | 578
560
577
571
569 | 571
553
570
560
558 | 570
553
563
550
561 | 572
558
571
555
570 | 577
568
582
565
579 | 585
577
587
569
581 | 589
581
591
563
585 | 593
588
591
578
589 | 598
592
600
582
592 | 599
598
596
585
600 | 600
600
588
590
601 | 604
598
591
596
601 | 589
598
595
595
599 | 576
594
604
594
596 | 585
596
614
597
597 | | | * | 595
597
601
589
491 | 595
596
596
592
506 | 596
597
592
577
523 | 597
600
599
582
525 | 597
600
599
585
529 | 598
601
601
581
525 | 598
602
598
590
527 | 595
599
598
587
535 | 587
596
582
579
535 | 578
596
569
562
529 | 575
595
565
570
509 | 575
593
555
579
521 | 577
592
555
515
520 | 585
590
551
530
524 | 590
591
549
508
542 | 595
592
538
500
545 | 595
598
552
501
551 | 601
594
560
514
529 | 606
597
559
542
560 | 605
599
559
550
566 | 605
602
563
509
614 | 601
600
571
525
584 | 599
601
579
491
551 | 598
610
581
493
541 | | 11
12
13
14
15 | ** | 552
555
573
578
579 | 529
564
567
580
580 | 558
584
566
585
596 | 556
550
574
584
589 | 559
561
580
581
589 | 568
578
582
585
589 | 565
562
579
588
591 | 571
555
571
584
588 | 570
550
556
581
566 | 570
543
556
561
555 | 568
546
536
551
554 | 559
545
524
549
555 | 541
547
549
544
555 | 552
540
551
539
561 | 520
536
550
542
569 | 528
547
552
557
575 | 516
555
565
550
585 | 507
559
569
572
582 | 535
569
591
574
580 | 548
572
581
566
583 | 567
569
582
559
579 | 555
582
581
566
586 | 559
584
583
567
581 | 571
577
590
578
581 | | 16
17
18
19
20 | ** | 593
577
588
583
575 | 588
581
590
585
572 | 587
581
587
588
572 | 592
581
598
590
572 | 592
586
591
588
572 | 583
591
590
605
577 | 581
590
591
579
578 | 585
585
585
569
578 | 580
574
576
558
566 | 562
568
586
546
555 | 548
556
581
540
547 | 547
552
576
535
536 | 545
560
579
531
550 | 549
571
578
532
557 | 558
571
572
542
563 | 555
568
565
546
571 | 559
578
571
559
577 | 567
585
575
550
571 | 580
591
577
557
577 | 583
593
580
543
585 | 583
594
575
544
588 | 581
592
583
558
585 | 590
593
582
581
581 | 593
591
588
575
581 | | 21
22
23
24
25 | | 582
581
585
586
570 | 583
582
585
586
573 | 589
583
586
588
575 | 590
582
591
586
574 | 587
585
595
587
576 | 591
586
595
590
580 | 591
588
590
596
580 | 587
588
578
594
585 | 581
586
582
592
586 | 572
580
589
592
580 | 567
575
578
585
567 | 566
566
568
576
577 | 569
565
571
577
576 | 571
567
574
579
576 | 567
565
579
581
573 | 573
565
571
586
578 | 581
569
573
590
584 | 581
569
580
596
594 | 562
572
580
604
596 | 566
583
585
571
596 | 563
582
591
551
598 | 576
588
590
566
594 | 586
588
599
585
591 | 583
587
602
576
587 | | 26
27
28
29
30 | * | 584
581
597
603
593 | 585
578
596
597
593 | 587
581
597
595
592 | 584
587
601
608
593 | 584
585
603
607
592 | 582
590
605
603
597 | 582
597
607
610
593 | 582
598
603
599
596 | 586
597
600
596
594 | 586
592
596
591
584 | 587
583
591
587
577 | 578
573
587
588
572 | 576
572
587
587
574 | 577
577
587
588
580 | 583
588
591
593
584 | 588
597
593
591
589 | 595
603
596
592
593 | 601
604
593
598
599 | 601
612
601
583
582 | 594
616
601
577
581 | 597
610
602
587
574 | 591
606
603
578
578 | 587
601
603
584
589 | 587
600
603
590
590 | | Mean | | 582 | 581 | 584 | 586 | 587 | 589 | 588 | 585 | 579 | 572 | 565 | 562 | 561 | 565 | 567 | 569 | 574 | 577 | 582 | 582 | 583 | 583 | 583 | 585 | | Mean Mean | | 593
563 | 593
562 | 594
568 | 595
570 | 594
572 | 596
576 | 595
572 | 593
572 | 587
565 | | 577
550 | 574
550 | 577
532 | 583
538 | 586
532 | 590
531 | 594
536 | 598
532 | 600
551 | 597
553 | 599
559 | 597
559 | 597
552 | 601
552 | | Decemb | er | | | | | | | | | 18000 | γ + | Tabul | ar Qua | antitie | es (ir | η γ) | | | | | | | | | | | 1
2
3
4
5 | * | 593
589
590
591
591 | 602
589
590
592
606 | 592
591
587
592
599 | 593
595
589
592
593 | 595
593
591
596
618 | 598
593
593
599
602 | 598
594
594
610
607 | 597
592
592
619
601 | 596
594
596
619
596 | 569
587
588
614
592 | 578
582
584
598
579 | 587
572
588
597
581 | 582
577
584
591
585 | 583
585
587
583
583 | 590
584
592
590
576 | 591
576
594
586
580 | 593
567
595
570
587 | 599
578
597
577
586 | 601
586
599
587
588 | 598
595
598
596
591 | 596
593
597
596
591 | 595
590
596
590
597 | 594
587
597
590
596 | 593
584
592
591
573 | | 6 7
7
8
9 1 | ** | 589
574
582
590
576 | 568
576
586
592
579 | 575
580
586
596
591 | 571
576
586
610
587 | 581
580
587
602
590 | 585
582
596
602
591 | 588
586
602
602
581 | 591
586
597
608
585 | 592
570
587
601
577 | 576
576
579
590
566 | 564
571
576
570
552 | 566
566
571
564
572 | 547
561
568
570
576 | 541
561
576
559
571 | 536
563
579
543
566 | 542
566
580
576
572 | 546
570
580
570
573 | 546
569
580
557
590 | 524
559
587
546
594 | 538
557
586
552
590 | 567
568
590
592
586 | 576
585
591
575
592 | 589
588
591
571
582 | 580
583
595
580
579 | | 11
12
13
14
15 | | 580
588
584
587
582 | 582
582
585
588
597 | 586
592
595
586
593 | 588
586
596
591
596 | 596
598
596
596
595 | 602
595
591
600
596 | 596
600
586
590
596 | 592
591
585
580
587 | 591
590
592
567
583 | 582
586
573
556
580 | 569
576
563
551
579 | 560
570
556
542
573 | 558
541
559
552
572 | 561
567
547
560
571 | 557
560
557
549
560 | 567
566
552
546
556 | 573
536
551
556
561 | 568
560
561
568
576 | 556
559
582
576
577 | 556
566
580
572
581 | 577
575
575
570
576 | 586
576
581
576
582 | 589
567
586
587
588 | 596
582
586
585
590 | | 16
17
18
19
20 | | 588
591
596
590
590 | 589
592
601
594
590 | 589
596
595
595
593 | 592
598
597
593
593 | 604
599
602
596
595 | 596
601
602
610
597 | 600
601
601
601
599 | 600
596
596
595
596 | 595
592
596
593
596 | 586
589
596
586
593 | 572
582
591
577
587 | 569
581
587
575
581 | 573
587
583
575
580 | 580
586
582
580
582 | 580
586
586
576
580 | 581
582
589
571
574 | 585
580
587
572
573 | 591
586
596
580
578 | 594
591
596
582
586 | 594
590
588
576
589 | 595
592
580
576
590 | 593
592
586
586
586 | 592
590
590
592
591 | 593
593
597
594
596 | | 21 = 22 = 23 = 24
= 25 | | 594
598
572
587
586 | 594
599
569
586
586 | 593
601
579
588
589 | 596
602
587
591
596 | 598
606
589
596
599 | 598
609
590
597
600 | 596
609
584
599
600 | 600
606
591
598
601 | 596
604
596
597
603 | 592
599
599
596
602 | 587
598
601
590
597 | 586
597
597
588
593 | 584
597
602
587
595 | 586
596
600
592
597 | 587
591
596
590
597 | 589
583
583
590
596 | 594
580
583
594
600 | 600
589
592
596
601 | 603
589
597
591
600 | 603
573
599
592
600 | 604
588
596
586
602 | 604
593
596
601
601 | 602
590
592
592
589 | 600
585
590
588
590 | | 26
27
28
29
30 | | 589
592
578
586
588 | 597
589
585
586
590 | 602
585
589
586
587 | 601
586
589
587
591 | 605
586
590
587
593 | 608
602
590
591
598 | 607
606
596
596
595 | 600
603
599
593
593 | 599
597
596
596
593 | 596
592
591
595
590 | 599
587
588
588
582 | 597
582
592
585
583 | 596
586
590
582
590 | 595
587
596
583
595 | 590
587
596
569
602 | 587
587
594
559
601 | 596
592
593
581
598 | 592
596
595
581
599 | 596
586
597
593
600 | 602
578
596
592
599 | 601
584
596
594
601 | 600
591
599
617
597 | 600
592
594
604
593 | 597
576
587
588
594 | | 31 | * | 595 | 594 | 596 | 601 | 603 | 602 | 602 | 602 | 602 | 600 | 596 | 597 | 601 | 604 | 605 | 601 | 598 | 601 | 600 | 593 | 598 | 598 | 598 | 599 | | Mean Mean Mean | | 587
592 | 589
592 | 590
593 | 592
595 | 596
597 | 597
598 | 597
598 | 596
597 | 594
596 | 588
592 | 581
587 | 579
587 | 578
587 | 580
589 | 578
590 | 578
588 | 579
588 | 583
592 | | `595 | 588
596 | 591
595 | 590
596 | 589
596 | | | • | 585 | 579 | 587 | 590 | 275 | 593 |) 7 7 2 | 593 | リソ4 | 585 | 217 |)/L | 564 | 563 | 558 | 40ر | 557 | 505 | 302 | 567 | 100 | 581 | 10ر | 704 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | TABL | E III | I | HOURLY | ME AN | S OF | VERT | ICAL | COMP | ONENT (| OF MA | GNE T | C IN | TENSI | TY A | r ABIN | GE R | | | | | |-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | U.T. 0 |)h 1 | h a | 2h | 3 h 4 | i ^h | 5 h | 6 ^h | 7 ^h 8 | 3 ^h 9 | 9 ^h 1 | 0 ^h 1 | 1 h | 12 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h | 18 ^h 1 | .9 ^h 2 | 20 ^h 2 | 1 ^h 2 | 2 ^h 2 | 3 ^h 24 ^h | | January | ···· | | | | | | | | 43000 | γ+ | Tabu | lar Qı | uantiti | es (1 | n γ) | | | | | | | | | | | 1
2
3
4 **
5 ** | 234
230
229
241
242 | 231
231
230
239
241 | 231
232
231
238
243 | 229
232
230
237
241 | 229
233
230
236
239 | 230
235
232
238
236 | 230
234
231
238
233 | 230
232
231
238
232 | 229
232
232
238
236 | 227
229
229
234
233 | 225
228
227
234
237 | 222
223
225
232
235 | 223
220
224
232
231 | 227 | 231
228
232
240
243 | 233
236
237
251
246 | 237
245
244
253
251 | 236
253
246
253
247 | 237
247
251
254
253 | 261 | 240
261 | 237
237
257
243
249 | 236
236
252
237
251 | 243
241 | | 6
7
8
9 *
10 * | 246
242
243
239
239 | 234
244
243
239
236 | 232
244
243
239
238 | 236
236
242
239
239 | 235
236
242
239
239 | 235
239
242
241
240 | 232
239
239
239
237 | 235
239
239
236
235 | 235
238
237
236
232 | 235
239
239
238
228 | 240
240
239
235
225 | 240
239
236
233
228 | 246
241
236
233
225 | 255
246
244
239
232 | 261
250
243
242
235 | 264
249
244
242
233 | 256
250
245
242
235 | 254
249
243
241
236 | 254
246
244
243
238 | 243 | 251
243
241
241
238 | 244
244
239
239
234 | 241
244
239
238
235 | 243
244
239
239
235 | | 11 *
12 *
13 *
14 | 233
232
230
236
234 | 233
233
232
232
231 | 234
233
233
231
231 | 234
233
232
230
231 | 235
232
233
233
232 | 238
232
232
232
234 | 234
231
231
232
232 | 232
232
229
231
234 | 228
231
228
229
234 | 226
228
228
232
234 | 224
228
225
229
233 | 222
227
222
229
232 | 221
224
223
228
228 | 226
230
229
234
232 | 230
233
233
232
230 | 232
232
232
229
229 | 233
232
231
231
230 | 234
232
230
232
229 | 233
232
232
234
233 | 233
233
234
237
234 | 234
232
234
237
238 | 231
232
232
234
240 | 232
232
237
234
242 | 231
229
234
233
240 | | 16 **
17
18
19
20 | 237
259
249
241
241 | 234
252
248
238
242 | 233
244
244
240
244 | 228
247
243
241
245 | 202
248
243
241
243 | 218
249
244
242
244 | 225
248
245
241
240 | 225
248
244
241
239 | 232
251
245
242
239 | 231
249
245
238
241 | 23 2
250
242
234
240 | 228
247
240
232
240 | 228
242
240
230
239 | 231
244
246
233
241 | 235
247
247
237
243 | 238
246
251
240
239 | 245
247
248
242
238 | 258
248
249
241
239 | 273
248
254
241
240 | 268
248
252
239
248 | 268
250
252
241
249 | 272
248
251
242
246 | 268
247
245
245
244 | 246
239
243 | | 21
22
23
24
25 ** | 240
235
239
235
234 | 243
239
240
235
235 | 239
239
242
234
238 | 239
239
240
235
234 | 239
239
240
235
213 | 240
239
241
236
213 | 237
236
239
233
213 | 236
235
237
233
219 | 235
238
234
239
219 | 234
238
233
237
223 | 235
238
229
237
229 | 237
239
229
235
242 | 223
234
231
236
271 | 235
230
235
240
295 | 239
232
236
249
304 | 238
233
233
249
323 | 236
236
235
245
309 | 239
239
235
244
295 | 239
243
236
245
290 | 239
246
238
249
281 | 239
244
239
250
281 | 239
244
239
248
281 | 237
242
237
242
277 | | | 26 **
27
28
29
30 | 270
248
243
241
241 | 269
248
241
241
241 | 269
247
242
242
241 | 263
245
242
241
241 | 248
241
243
235
240 | 235
243
245
235
240 | 235
245
244
237
239 | 240
248
244
237
238 | 248
247
243
236
235 | 243
247
244
237
232 | 240
243
243
239
230 | 235
240
238
237
230 | 234
242
235
234
229 | 245
247
241
237
231 | 255
252
248
244
233 | 261
254
248
244
235 | 272
250
247
247
236 | 266
245
246
247
236 | 269
249
246
247
239 | 272
252
246
245
239 | 266
254
246
245
239 | 256
249
244
243
239 | 253
247
244
241
242 | 252
251
243
241
241 | | 31 | 240 | 240 | 241 | 238 | 235 | 236 | 236 | 239 | 240 | 240 | 233 | 234 | 230 | 229 | 234 | 236 | 237 | 238 | 239 | 240 | 241 | 240 | 242 | 236 | | Mean * | 240
235 | | | 238
235 | 236
236 | 237
237 | 236
234 | 236
233 | | 235
230 | 234
227 | 233
226 | 233
225 | 238
231 | 242
235 | 244
234 | | 245
235 | 246
236 | 247
236 | 246
236 | 244
234 | | 242
234 | | Mean ** | 245 | | | 241 | | | | | 235 | | | | | | | | 266 | | 268 | | 264 | | | | | February | | | | | | | | | 43000 | γ+ | Tabu] | lar Qu | antitie | es (ir | ι γ) | | | | | | | | | | | 1
2
3
4
5 | | 231
236
241
229
238 | | 230
233
239
223
236 | 230
233
237
226
236 | 229
233
239
230
236 | 229
233
235
230
236 | 230
234
234
230
232 | 232
237
231
230
232 | 233
232
228
228
231 | 232
229
220
224
222 | 233
228
220
224
223 | 232
226
226
223
222 | 233
230
230
230
230
227 | 238
236
232
231
232 | 238
236
236
236
233 | 237
236
239
238
233 | 238
235
240
236
233 | 239
236
237
236
235 | 241
236
237
236
233 | 241
238
237
237
234 | 240
240
236
239
235 | 238
241
235
240
235 |
236
241
234
239
236 | | 6
7
8 **
9 **
10 | 238
235
236
240
236 | 239
237
231
238
243 | 238
236
230
236
246 | 236
236
230
228
247 | 235
236
233
227
246 | 233
236
235
226
246 | 230
233
234
232
242 | 226
232
235
238
242 | 226
230
232
240
241 | 229
227
227
236
236 | 228
217
228
238
230 | 229
215
227
238
227 | 227
218
229
237
226 | 230
225
238
236
236 | 231
232
246
239
249 | 236
233
256
241
252 | 240
236
264
250
250 | 242
237
272
249
249 | 242
238
279
246
246 | 242
244
276
246
247 | 241
244
264
249
247 | 237
242
255
247
246 | 235
238
248
240
241 | 233
237
240
234
241 | | 11
12
13
14 *
15 * | 241
234
237
233
233 | 240
235
235
233
233 | 241
236
235
235
234 | 241
237
235
234
234 | 241
237
236
234
233 | 241
239
236
235
234 | 239
237
236
235
232 | 239
238
236
234
231 | 243
240
239
233
234 | 233
238
233
233
236 | 222
231
227
230
230 | 220
225
224
224
228 | 220
224
223
224
220 | 224
225
223
224
222 | 228
229
227
231
228 | 229
234
232
233
231 | 233
236
233
231
231 | 237
236
237
233
231 | 238
236
237
231
231 | 238
238
237
230
231 | 238
239
237
232
233 | 239
238
237
232
233 | 238
237
237
232
232 | 236
238
236
232
232 | | 16 **
17 **
18
19 **
20 | 233
233
252
256
223 | 234
246
247
253
231 | 234
228
244
252
235 | 232
214
241
251
221 | 227
219
240
248
223 | 226
220
238
246
229 | 225
225
237
243
234 | 223
234
241
243
237 | 222
239
239
242
241 | 222
232
236
244
242 | 218
228
237
243
237 | 222
229
237
241
233 | 232
233
239
240
229 | 254
238
243
244
231 | 283
250
249
261
238 | 312
258
259
265
243 | 318
272
259
264
247 | 318
276
256
266
248 | 292
267
253
273
247 | 280
261
255
267
247 | 282
258
259
264
248 | 284
258
258
251
247 | 272
258
257
243
245 | 261
254
255
238
244 | | 21 *
22 *
23 *
24
25 | 243
241
237
237
235 | 241
240
236
237
234 | 241
240
238
237
234 | 241
239
238
237
236 | 241
240
238
236
236 | 243
241
237
234
236 | 242
241
238
233
237 | 243
241
241
237
239 | 247
242
241
240
239 | 238
237
231
233
232 | 230
228
227
227
226 | 229
227
224
222
222 | 232
228
222
222
224 | 234
231
222
223
225 | 239
233
224
230
230 | 242
237
232
232
235 | 242
239
236
234
244 | 241
239
236
239
245 | 242
239
237
243
246 | 243
238
235
244
244 | 241
238
235
244
244 | 241
237
237
242
243 | 241
239
236
240
244 | 241
237
236
237
241 | | 26
27
28 | 232
242
239 | 222
240
238 | 220
240
237 | 225
239
238 | 229
239
238 | 233
238
241 | 235
238
242 | 240
240
242 | 242
242
243 | 235
235
237 | 228
229
234 | 220
225
229 | 218
222
228 | 226
225
232 | 234
234
238 | 243
239
240 | 246
244
243 | 244
243
242 | 244
242
244 | 243
243
244 | 242
242
242 | 242
242
243 | 243
244
247 | 243
243
240 | | Mean | 237 | 237 | 236 | 235 | 235 | 235 | 235 | 236 | 237 | 233 | 229 | 227 | 227 | 231 | 238 | 243 | 246 | 246 | 246 | 245 | 245 | 244 | 242 | 240 | | Mean * Mean ** | 237
240 | 237
240 | 238 | 237 | | 238 | 238 | 238 | | 235 | | 226 | 225 | 227 | | 235 | 236 | 236 | 236 | 235
266 | 236
263 | 236 | 236
252 | 236 | | | 240 | 24U | 270 | 231 | 27 L | 4 J I | 232 | 43) | 235 | 456 | 471 | 471 | 434 | 444 | ا ال | 200 | 274 | 4/0 | 2/1 | 200 | 203 | 4 J 7 | 272 | 447 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | TABL | E III | 1 | HOURLY | MEAN | s of | VERT | ICAL | COMPO | NENT (| OF MA | GNET | IC IN | TENS | ra yr: | ABIN | GER | | | | | |--|---------------------------------|--|---------------------------------| | U.T. 0 | ,h 1 | h 2 | h 3 | h 4 | h 5 | h | 6 ^h 7 | h 8 | 3 ^h 9 | h 1 | 0 ^h 1 | 1 h 1 | 2 ^h 1 | 3 h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h 1 | 8 ^h 1 | 9 ^h 2 | 0 ^h 2 | 1 h 2 | 2 ^h 2 | 3 ^h 24 ^h | | March | | | | | | | | | 43000 |) Y + | Tabu: | Lar Qu | antitie | s (ir | n γ) | | | - | | | | | | | | 1 * 2 ** 3 ** 4 | 232
238
243
238
257 | 43000 y + Tabular Quantitles (In y) 232 234 235 237 238 246 247 248 242 242 242 242 242 242 242 242 242 | | | | | | | | | | | | | | 241
244
162
259
258 | | | | | | | | | | 6 *
7
8 **
9 | 256
251
248
227
259 | 250
247
231 | 250
247
233 | 249
242
231 | 251
239
237 | 250
241
243 | 240 | 250
243 | 249
241 | 238
237
260 | 228
236
260 | 222
237
260 | 253
268 | 266
274 | 236
309
282 | 244
372
291 | 253
383
294 | 252
387
292 | 353
288 | 252
346
284 | 251
327
277 | 251
300
268 | 251
286
265 | 251
251
257
260
255 | | 11 *
12
13
14
15 ** | 253
249
246
239
253 | 243
245
236 | 246
245
237 | 247
245
238 | 246
245
240 | 246
236 | 250
241 | 259
255 | 258
256 | 245
249
258 | 241
241
259 | 238
232
253 | 236
232
255 | 239
262 | 241
241
275 | 248
242
291 | 252
250
312 | 252
250
288 | 251
272 | 252
251
268 | 252
250
268 | 252
249
266 | 251
246
263 | 241
261 | | 16
17
18
19
20 | 266
244
248
253
252 | 227
250
249 | 236
252
246 | 228
251
247 | 229
253
249 | 233
255
253 | 242
260
259 | 266
260 | 250
260
257 | 253
253
255 | 252
253
247 | 256
249
244 | 260
247
243 | 262
246
246 | 266
251
249 | 270
259
252 | 272
273
261 | 276
268
267 | 274
262
265 | 267
261
264 | 264
263
262 | 262
259
262 | 258
257
261 | 256
256
256
259
255 | | 21 *
22
23
24
25 | 251
251
247
249
236 | 250
243
244 | 250
241
238 | 244
243
221 | 227
243
223 | 211
241
223 | 240
221 | 223
242
234 | 227
239
245 | 231
231
244 | 225
225
243 | 227
221
240 | 230
238 | 233
233
243 | 241
247
246 | 247
278
252 | 252
321
253 | 254
310
253 | 261
280
254 | 261
270
254 | 256
267
251 | 250
263
250 | 247
256
249 | | | 26
27
28 **
29
30 | 227
245
234
253
234 | 242
234
257 | 242
222
261 | 239
198
260 | 243
213
262 | 242
227
264 | 240
238
270 | 240
238
271 | 234
238
267 | 225
245
259 | 223
248
243 | 221
252
239 | 222
267
242 | 232
296
251 | 242
318
261 | 251
332
269 | 257
338
272 | 263
340
275 | 272
316
284 | 271
303
277 | 267
297
266 | 266
290
265 | 256
280
257 | 243
248
263
252
261 | | 31 | 257 | 249 | 241 | 234 | 246 | 251 | 259 | 267 | 257 | 250 | 244 | 242 | 247 | 262 | 276 | 282 | 279 | 274 | 265 | 261 | 260 | 259 | 258 | 257 | | Mean
Mean * | 246 | _ | | | | | | | | - | | | | | | | | | | | | | | 249
250 | | Mean ** | - | - | | | | | - | | | | | | | | | - | | - | - | | - | - | - | | | April | | | | | | | | | 43000 | Υ + | Tabu] | ar Qu | antitie | s (ir | ι γ) | | | | | | | | | | | 1 *
2
3
4
5 | 256
249
248
237
242 | 249
249
239 | 249
247
242 | 247
242
243 | 247
236
243 | 246
240
244 | 250
243
246 | 250
243
247 | 247
237
240 | 237
229
233 | 232
223
226 | 227
214
220 | 228
217
231 | 241
222
248 | 246
231
259 | 249
238
266 | 253
241
281 | 261
242
288 | 257
242
283 | 253
243
278 | 249
243
268 | 250
242
260 | 250
241
249 | 251
250
242
249
249 | | 6
7
8
9 ** | 247
244
246
210
253 | 245
246
224 | 247
247
234 | 247
247
240 | 249
248
241 | 248
247
237 | 250
249
234 | 249
248
241 | 248
243
241 | 243
236
242 | 227
224
238 | 212
210
239 | 209
206
243 | 223
218
247 | 237
233
256 | 258
241
266 | 268
246
267 | 264
247
267 |
254
246
266 | 250
244
261 | 247
243
257 | 247
245
254 | 247
241
254 | 247
247
237
254
243 | | 11
12
13
14
15 | 233
244
241
243
241 | 247
242
241 | 247
233
241 | 247
236
241 | 247
238
238 | 244
239
237 | 245
242
239 | 243
241
239 | 240
237
239 | 231
226
232 | 228
217
221 | 222
211
218 | 221
208
225 | 230
214
229 | 241
234
235 | 250
243
245 | 259
253
250 | 263
257
247 | 262
257
250 | 257
256
253 | 251
251
253 | 249
248
247 | 245
246
244 | 246
240
243
247
245 | | 16
17 **
18 **
19 **
20 ** | 245
239
289
262
247 | 240 | 242 | 237 | 238 | 231 | 232 | 234 | 232 | 224 | 218 | 214 | 218 | 219 | 224 | 257 | 272 | 301 | 328 | 328 | 280 | 322 | 212 | 244
274
266
257
255 | | 21 *
22 *
23 *
24 *
25 | 254
247
243
241
239 | 254
247
243
241
239 | 253
247
244
242
241 | 254
250
247
247
243 | 247
248
247
247
243 | 243
248
248
247
245 | 245
250
251
245
245 | 247
248
251
243
243 | 252
243
247
238
241 | 250
237
236
233
236 | 243
226
222
225
223 | 237
218
217
217
213 | 238
222
218
219
208 | 241
227
223
223
211 | 247
231
230
232
223 | 247
237
237
237
241 | 247
242
239
240
257 | 250
246
241
243
247 | 251
246
242
243
251 | 248
247
241
242
247 | 248
244
241
241
243 | 247
243
239
240
239 | 247
243
238
239
240 | 247
243
238
238
237 | | 26
27
28
29
30 | 237
242
242
241
241 | 234
242
241
240
236 | 235
243
240
241
235 | 239
243
243
243
239 | 244
246
241
244
240 | 247
247
238
244
235 | 243
248
235
244
232 | 243
247
236
242
233 | 241
241
238
237
235 | 234
227
229
228
231 | 226
222
213
222
220 | 217
216
203
220
211 | 209
212
203
221
209 | 217
217
216
228
210 | 227
231
232
237
223 | 237
235
237
237
232 | 243
242
247
242
236 | 253
245
250
246
241 | 257
247
247
247
247 | 257
251
248
246
247 | 253
249
248
246
247 | 247
247
247
244
245 | 247
244
244
244
242 | 243
243
241
242
242 | | Mean | 245 | 245 | 245 | 245 | 245 | 245 | 246 | 246 | 243 | 236 | 227 | 221 | 222 | 230 | 240 | 249 | 255 | 257 | 258 | 256 | 252 | 252 | 246 | 247 | | Mean * Mean ** | 248 | 248 | 248 | 250 | 249 | 248 | 249 | 248 | 245 | | 228 | 222 | 223
239 | 228 | 235 | 240 | 243 | 246 | | 246 279 | 245 | 244
274 | 244 | 243 | | | 247 | 2)1 | 4)4 | 252 | 2)2 | | Intern | 248 | 440 | 241 | | | | 246 | | | 274 | 4/0 | 202 | | 200 | 2/4 | ∪ر ∡ | | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | TABL | E III | | HOURLY | MEAN | S OF | VERT | ICAL | COMPO | NENT (| OF MA | GNET | C IN | TENSI | TY A | r ABIN | GER | | | | | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------| | U.T. | 0 ^h 1 | h 2 | h 3 | 3 ^h 4 | i ^h 5 | h | 6 ^h 7 | 7 ^h { | 3 ^h 9 |) ^h 1 | 0 ^h 1 | 1 ^h 1 | 12 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h 1 | 18 ^h 1 | 9 ^h 2 | 0 ^h 2 | 1 ^h 2 | 2 ^h 2 | 3 ^h 24 ^h | | May | | | | | | | | | 43000 |) Y + | Tabu! | lar Qu | antitie | es (i | η γ) | | | | | | | | | | | 1
2 *
3
4
5 | 241
243
241
241
240 | 240
244
241
241
241 | 236
246
242
241
241 | 237
247
243
241
238 | 243
250
243
243
237 | 240
252
242
243
241 | 237
250
237
242
237 | 239
243
237
237
232 | 237
240
236
231
230 | 232
231
231
219
223 | 223
219
223
211
217 | 219
211
217
203
214 | 223
213
217
204
217 | 227
221
224
217
221 | 237
231
234
230
231 | 243
234
242
234
241 | 254
237
247
239
247 | 257
241
249
241
252 | 252
241
247
243
250 | 248
241
242
244
247 | 244
241
241
243
243 | 243
242
241
239
241 | 242
241
240
239
241 | 242
240
241
239
241 | | 6
7
8 *
9 *
10 * | 241
236
238
238
234 | 240
237
239
239
236 | 242
240
241
240
237 | 246
244
242
242
242
240 | 247
246
243
243
242 | 250
246
243
244
245 | 247
243
240
242
246 | 243
240
237
238
243 | 242
234
231
231
235 | 236
224
223
217
225 | 220
217
217
204
212 | 207
211
211
197
206 | 207
214
217
197
207 | 222
223
226
204
214 | 239
237
232
218
227 | 249
241
237
230
238 | 252
244
242
234
248 | 254
247
243
238
252 | 251
244
243
238
252 | 243
241
241
237
249 | 241
241
239
237
247 | 240
238
239
237
243 | 239
238
238
236
243 | 239
237
238
234
241 | | 11
12
13
14 **
15 ** | 240
245
237
230
239 | 239
239
237
227
239 | 239
229
239
223
237 | 239
228
242
228
221 | 243
215 | 241
241
246
227
228 | 238
242
240
232
233 | 234
240
232
227
234 | 231
234
224
221
227 | 219
226
221
210
225 | 208
217
211
201
218 | 198
213
206
200
212 | 196
219
209
210
213 | 207
226
215
218
228 | 222
232
223
229
242 | 233
240
232
241
250 | 246
249
238
249
252 | 257
254
247
256
248 | 259
253
253
257
244 | 257
249
256
257
244 | 252
248
255
251
250 | 247
245
249
244
248 | 248
241
241
241
239 | 246
241
236
237
223 | | 16 **
17
18
19
20 | 223
233
239
243
245 | 209
230
238
246
245 | 198
231
233
246
245 | 196
236
237
244
247 | 207
237
240
245
247 | 217
241
241
242
245 | 222
240
240
238
241 | 229
237
238
238
235 | 227
233
237
237
234 | 222
227
233
227
234 | 217
222
228
211
225 | 219
214
217
197
219 | 222
215
221
205
228 | 234
221
227
222
232 | 251
234
241
233
238 | 257
246
247
242
244 | 257
253
259
248
249 | 257
259
273
253
248 | 257
266
278
253
247 | 259
261
272
249
242 | 254
254
261
250
242 | 246
244
253
246
242 | 239
240
251
244
243 | 231
239
245
244
242 | | 21
22
23 **
24 **
25 | 240
237
236
235
253 | 239
238
238
235
253 | 242
239
237
237
250 | 244
243
218
238
251 | 244
204
242
254 | 254 | 239
244
222
237
254 | 232
243
220
224
251 | 235
238
222
207
241 | 225
227
218
231
230 | 214
209
208
222
224 | 207
198
203
216
217 | 213
202
203
220
220 | 208
230
229 | 227
224
222
244
238 | 237
238
228
252
249 | 243
239
231
259
260 | 244
247
238
262
264 | 243
249
244
261
267 | 243
248
244
259
265 | 241
243
241
256
261 | 240
238
238
255
256 | 240
238
237
254
252 | 238
235
236
252
248 | | 26
27
28
29
30 * | 246
240
243
239
252 | 248
242
242
239
252 | 246
242
242
241
252 | 246
246
247
245
255 | 243
242
250
249
258 | 242
248
252
251
257 | 245
248
250
250
253 | 240
244
245
248
250 | 231
239
236
240
243 | 222
224
222
236
237 | 219
214
213
228
219 | 214
211
209
228
210 | 214
214
215
230
212 | 224
228
228
241
221 | 242
238
242
264
229 | 259
249
254
294
237 | 268
260
261
305
243 | 279
267
265
314
247 | 274
263
265
312
247 | 268
260
258
293
244 | 257
254
249
282
245 | 250
250
248
268
244 | 243
247
242
259
244 | 238
245
240
254
243 | | 31 | | | | 244 | | | | | 230 | | | | | 218 | 228 | | 249 | | 253 | | | | 249 | | | Mean
Mean * | | 239
242 | 239
243 | 239
245 | 240
247 | 242
248 | 241
246 | 238
242 | 233
236 | 226
227 | 216
214 | 210
207 | 213
209 | 222
217 | 234
227 | 244
235 | 250
241 | 255
244 | 255
244 | 252
242 | 249
242 | 245
241 | - | 240
239 | | Mean ** | 233 | 230 | 226 | 220 | 218 | 226 | 229 | 227 | 221 | 221 | 213 | 210 | 214 | 224 | 238 | 246 | 250 |
252 | 253 | 253 | 250 | 246 | 242 | 236 | | June | | | | | | | | | 43000 | Υ+ | Tabu] | ar Qua | antitie | s (ir | γ) | | | | | Mary - 1870 | | | | | | 1 **
2 *
3
4
5 ** | 223
248
245
244
241 | | 199
249
242
244
242 | 195
252
241
248
247 | 201
254
233
249
248 | 204
258
237
249
244 | 212
254
239
248
239 | 221
251
241
242
232 | | 210
240
228
231
228 | | 207
216
218
218
213 | | 229
223
225
234
234 | 242
233
234
242
244 | 253
243
243
247
252 | 262
252
252
254
254 | 268
258
252
260
258 | 265
258
249
258
258 | 257
253
248
254
252 | 249
252
248
248
253 | 247
248
244
242
251 | 247
245
243
242
249 | 248
245
•244
241
248 | | 6
7
8
9
10 | 231
242
228
244
241 | 234
239
218
243
238 | 245
240
217
240
234 | 253
239
216
228
234 | 258
234
218
232
239 | 258
238
220
240
230 | 254
238
229
235
233 | 248
235
228
234
235 | 239
233
229
234
234 | 238
227
222
228
226 | 228
219
222
218
224 | 223
219
216
215
222 | 235
228
225
224
224 | 234
234
238
236
235 | 239
242
250
248
244 | 244
252
258
247
250 | 249
259
263
249
252 | 253
269
274
258
254 | 253
268
273
263
255 | 248
263
270
260
255 | 249
259
262
254
256 | 249
252
253
250
250 | 248
233
250
249
246 | 244
228
247
242
243 | | 11
12 *
13
14 ** | 241
241
238
205
244 | 236
241
238
185
241 | 238
239
235
197
243 | 243
242
235
171
241 | 244
243
239
171
237 | 242
244
244
204
242 | 238
241
242
208
250 | 231
235
235
206
245 | 231
230
234
204
238 | 228
228
226
201
230 | 219
228
218
208
227 | 213
221
210
198
222 | 222
221
212
223
228 | 230
222
222
242
228 | 241
235
233
248
239 | 242
243
240
256
245 | 244
243
250
263
250 | 248
244
257
273
251 | 252
251
254
277
254 | 249
251
251
268
252 | 247
250
243
258
249 | 243
248
242
249
245 | 242
245
238
248
244 | 242
242
223
247
244 | | 16 *
17 **
18
19
20 | 244
239
249
239
240 | 244
239
251
239
242 | 245
239
251
242
245 | 247
237
252
245
248 | 246
224
252
241
248 | 244
221
251
240
249 | 242
215
244
246
248 | 235
219
239
246
245 | 234
219
232
245
248 | 225
224
226
238
252 | 217
220
222
225
245 | 213
214
221
227
229 | 214
220
225
233
230 | 221
229
233
235
238 | 228
237
244
243
247 | 235
250
251
255
252 | 241
263
260
261
259 | 244
287
263
263
265 | 248
297
264
266
268 | 244
292
259
259
263 | 240
271
254
253
254 | 238
260
254
250
249 | 238
251
249
247
245 | 239
249
241
242
243 | | 21
22
23
24
25 ** | 243
239
239
242
242 | 243
239
235
241
240 | 244
239
233
244
239 | 250
239
240
246
233 | 253
240
245
249
223 | 259
243
245
251
232 | 260
248
242
248
231 | 255
241
239
243
229 | 244
234
238
240
235 | 228
226
232
235
245 | 209
219
220
225
241 | 204
211
224
224
235 | 219
222
228
230
239 | 229
227
230
239
245 | 239
234
249
246
251 | 243
243
263
251
255 | 249
253
270
258
265 | 258
263
271
261
269 | 259
264
265
262
268 | 255
263
255
265
266 | 250
256
251
263
264 | 245
248
246
257
259 | 243
243
243
251
255 | 239
240
242
246
253 | | 26
27 *
28
29 *
30 | 249
249
243
243
240 | 248
246
243
243
235 | 249
244
243
243
238 | 253
251
248
245
242 | 250
253
249
248
240 | 245
255
249
252
243 | 242
255
245
250
241 | 234
252
239
244
241 | 234
250
234
243
235 | 235
248
233
236
236 | 230
242
230
225
229 | 231
234
222
218
224 | 241
234
220
222
229 | 248
235
225
228
237 | 254
243
235
235
239 | 264
246
245
235
245 | 272
253
248
242
255 | 279
255
254
245
261 | 278
258
262
244
259 | 266
255
252
245
260 | 259
253
249
244
255 | 254
249
246
243
248 | 251
245
245
242
244 | 251
244
243
242
244 | | Mean | 240 | 238 | | | 239 | 241 | | 237 | 235 | | 224 | 219 | 225 | 232 | 241 | 248 | 255 | 261 | 262 | | 253 | 249 | 245 | 243 | | Mean *
Mean ** | 245
230 | 244
223 | 244
223 | | 249
213 | 251
221 | 248
221 | 243221 | 240
222 | 235
222 | | 220
213 | 221
224 | 226
236 | 235
244 | 240
253 | 246
261 | 249
271 | 252
273 | 250
267 | 248
259 | 245
253 | 243
250 | 242
249 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | TABL | E III | 1 | HOURLY | MEAN | s of | VERT | ICAL | COMP | ONENT (| F MA | GNETI | C IN | TENSI | TY A' | r ABIN | GER | | | | | |--|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | U. т. о ¹ | h 1 | h 2 | h 3 | h 4 | h 5 | h . | 6 ^h 7 | h 8 | 3 ^h 9 | h 1 | 0 ^h 1 | 1 h | 12 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h : | 18 ^h 1 | 9 ^h 2 | 0 ^h 2 | 1 h 2 | 2 ^h 2 | 3 ^h 24 ^h | | July | | | | | | | | | 43000 | γ+ | Tabul | lar Qu | antitie | es (ir | η γ) | | | | | | | | | | | 1
2
3 *
4 *
5 * | 240
239
239
239
237 | 240
237
240
239
237 | 240
238
241
240
239 | 245
242
244
242
242 | 249
239
246
245
244 | 249
239
245
249
245 | 249
243
238
244
242 | 247
243
230
241
238 | 244
236
230
236
233 | 239
229
231
225
225 | 229
215
228
216
215 | 224
208
227
209
208 | 228
219
226
212
211 | 234
229
231
219
215 | 241
234
238
225
222 | 245
243
243
233
230 | 250
254
242
242
242
236 | 257
255
249
246
243 | 260
259
250
247
246 | 243 | 248
244
247
242
241 | 245
242
244
239
239 | 243
239
241
238
237 | 242
240
239
236
236 | | 6
7
8
9
10 | 236
234
234
232
229 | 235
235
233
233
229 | 233
234
235
235
227 | 235
238
239
238
225 | 238
235
240
238
227 | 239
234
240
238
229 | 242
229
235
235
231 | 239
225
236
233
226 | 234
226
232
224
225 | 229
223
227
214
220 | 213
215
224
203
212 | 201
212
221
197
215 | 203
214
223
202
219 | 210
218
223
206
219 | 226
223
232
217
225 | 233
228
239
229
239 | 243
238
244
235
249 | 245
248
248
239
249 | 246
250
253
243
249 | 250
241 | 242
243
245
244
248 | 239
240
239
239
241 | 239
235
236
238
239 | 238
233
233
236
236 | | 11
12
13
14 * | 229
229
237
239
237 | 229
230
235
237
232 | 231
229
234
233
230 | 235
228
236
238
230 | 235
224
242
239
234 | 235
229
240
239
235 | 237
233
235
231
233 | 235
231
231
227
235 | 233
225
225
221
227 | 217
223
221
219
221 | 212
222
208
216
219 | 205
213
205
209
209 | 203
217
208
204
208 | 205
225
215
212
221 | 214
230
228
223
233 | 224
234
240
230
242 | 234
238
251
239
246 | 243
245
260
247
248 | 244
250
259
251
249 | 246
247
249
251
244 | 241
245
242
249
244 | 239
241
239
244
239 | 233
238
239
242
236 | 229
238
239
240
236 | | 16
17 **
18 **
19 **
20 ** | 238
234
255
235
250 | 234
234
239
224
244 | 233
235
252
217
243 | 239
238
254
216
241 | 242
239
263
233
240 | 244
239
264
251
248 | 242
239
260
250
249 | 241
235
252
249
239 | 235
232
242
253
242 | 229
229
233
249
233 | 213
225
229
245
229 | 201
216
229
246
223 |
209
206
232
241
234 | 216
203
249
242
244 | 225
214
287
248
255 | 232
233
302
259
274 | 241
243
321
269
286 | 245
252
325
282
284 | 241
257
329
283
283 | 297
273 | 234
302
277
266
269 | 234
290
264
259
256 | 252 | 233
266
245
249
247 | | 21
22
23 **
24
25 | 248
243
239
243
241 | 249
241
241
239
239 | 249
242
241
241
231 | 249
245
243
245
232 | 245
247
239
244
239 | 250
249
249
246
241 | 241
246
249
252
241 | 239
245
252
250
240 | 235
238
245
246
235 | 232
231
235
241
230 | 228
223
231
234
224 | 219
211
230
232
215 | 222
213
224
232
203 | 219
222
224
228
214 | 229
233
229
241
224 | 241
243
242
254
242 | 250
253
250
261
247 | 254
262
256
259
261 | 256
266
258
259
264 | 255
265
257
254
264 | 254
261
255
252
261 | 248
256
248
249
252 | 244
248
245
247
245 | 242
243
244
244
242 | | 26
27
28
29
30 * | 240
245
244
241
243 | 239
244
242
239
243 | 238
242
242
238
243 | 232
242
243
236
244 | 219
239
245
238
247 | 229
239
249
239
248 | 236
236
248
239
248 | 239
228
245
237
245 | 239
226
243
229
236 | 235
227
236
225
230 | 228
223
226
223
229 | 219
220
222
219
226 | 213
229
222
219
221 | 224
235
229
225
222 | 243
243
238
236
230 | 251
251
248
246
239 | 252
254 | 270
259
254
257
244 | 266
261
256
256
244 | 255 | 258
253
248
245
243 | 252
250
246
243
241 | 249
249
242
244
242 | 246
248
242
244
242 | | 31 | 240 | 239 | 238 | 239 | 244 | 247 | 246 | 244 | 237 | 229 | 220 | 212 | 206 | 208 | 220 | 237 | 247 | 253 | 254 | 251 | 245 | 245 | 245 | 242 | | Mean
Mear * | | | - | | 240 | | | | 234 | | | | | 222 | | | | | 258 | | | | 243 | | | Mean *
Mean ** | 239
243 | 23 <i>9</i>
236 | 239
238 | | 244
243 | 245
250 | 241
249 | _ | 231
243 | 226
236 | 221
232 | 214
229 | 215
227 | 220
232 | 228
247 | 235
262 | 241
274 | 246
280 | 248
282 | 246
276 | 244
274 | 241
263 | 240
254 | 239
250 | | August | | | | | | | | | 43000 | γ+ | Tabul | ar Qu | antitie | s (ir | ι γ) | | | | | | | | | | | 1
2
3
4
5 * | | 229
240
239
235
235 | 228
239
241
237
238 | 234 ⁻
241
242
238
236 | 242
241
244
239
237 | 241
239
245
243
239 | 240
238
244
240
239 | 234
238
238
236
239 | 223
238
232
229
235 | 214
229
218
220
225 | 216
220
205
215
220 | 218
202
201
211
217 | | 214
204
211
219
219 | | | | | 248
245
251
239
240 | 243
248 | 250
244
243
236
239 | | 242
237
239
237
233 | 241
236
239
235
235 | | 6
7
8 *
9 *
10 * | 235
232
233
235
235 | 235
229
229
235
233 | 236
233
227
234
234 | 237
235
233
236
235 | 239
234
239
239
239 | 241
234
240
239
239 | 239
233
239
237
237 | 235
230
236
233
230 | 230
225
230
225
222 | 223
219
227
220
210 | 215
208
219
209
200 | 213
199
206
193
196 | 211
193
205
193
198 | 219
193
218
206
208 | 227
209
234
219
218 | 236
224
249
229
230 | 242
230
249
235
235 | 246
235
247
239
239 | 243
239
242
239
239 | 240
239
239
239
239 | 243
238
238
238
238 | 240
236
236
236
237 | 237
234
235
237
236 | 236
234
235
238
237 | | 11
12
13
14
15 ** | 237
238
249
244
243 | 237
233
244
236
244 | 237
228
242
229
244 | 237
212
241
231
245 | 238
210
243
239
246 | 236
208
241
244
246 | 235
208
235
249
246 | 233
203
227
244
243 | 227
205
225
235
236 | 221
210
224
231
231 | 213
214
222
225
210 | 208
214
219
223
202 | 209
216
215
221
195 | 215
218
221
229
198 | 220
225
235
239
215 | 238
238
254
255
227 | 245
245
268
262
233 | 253
245
262
267
235 | 253
243
271
268
238 | 248
243
264
259
236 | 246
244
263
253
243 | 241
245
260
249
251 | 238
246
253
248
209 | 235
246
244
242
232 | | 16 **
17
18 **
19
20 | 170
243
250
234
244 | 223
231
229
246
217 | 238
233
215
248
229 | 240
229
239
242
248 | 248
238
244
241
253 | 256
229
235
249
255 | 262
248
229
249
253 | 263
253
239
245
253 | 260
248
239
245
253 | 258
251
231
236
245 | 259
245
229
242
239 | 260
239
234
251
239 | 265
245
240
250
244 | 285
258
255
258
249 | 309
269
264
266
263 | 329
288
284
292
284 | 339
298
297
309
299 | 333
322
301
305
289 | 309
320
313
304
278 | 299
299
293
292
270 | 289
285
279
279
265 | 269
258
267
269
260 | 264
243
259
250
255 | 251
248
231
237
244 | | 21
22 **
23 **
24
25 | 227
249
233
249
251 | 236
249
203
245
240 | 239
248
203
245
231 | 220
249
211
245
225 | 229
252
208
239
237 | 233
248
218
239
244 | 236
240
231
243
251 | 240
245
238
245
252 | 243
245
240
245
245 | 242
211
239
248
236 | 240
228
235
252
237 | 239
259
235
249
234 | 240
263
233
254
234 | 243
270
253
262
245 | 256
272
295
272
249 | 273
279
293
275
267 | 283
303
284
276
273 | 289
303
293
275
281 | 293
289
293
274
275 | 283
279
275
278
271 | 270
269
265
265
262 | 256
265
262
256
261 | 252
265
259
254
251 | 251
261
257
253
247 | | 26
27
28
29
30 * | 246
242
252
242
247 | 249
237
252
236
248 | 251
234
251
239
248 | 252
228
249
233
246 | 254
239
250
243
244 | 254
245
251
247
244 | 249
248
251
249
245 | 248
249
250
248
248 | 244
244
245
242
246 | 242
241
235
230
243 | 235
239
229
222
235 | 225
234
224
220
228 | 230
233
218
226
228 | 244
241
224
241
236 | 256
246
233
251
246 | 263
248
243
262
252 | 264
252
250
261
253 | 265
254
258
256
249 | 267
252
253
251
246 | | 258
250
251
249
248 | 255
251
254
248
248 | 253
252
257
248
248 | 252
252
253
248
246 | | 31 | 245 | 245 | 245 | 245 | 245 | 244 | 245 | 244 | 237 | 233 | 222 | 219 | 220 | 228 | 240 | 249 | 257 | 259 | 258 | 260 | 261 | 259 | 255 | 253 | | Mean
Mean * | 239 | | 236 | | 240 | 241 | | 241 | 237 | 230 | 226 | 223 | 223 | 232 | 244 | 256 | - | 265 | | 259 | 255 | | | 244 | | nean **
Mean ** | 238
229 | 236
230 | 236
230 | 237
237 | 240
240 | 240
241 | 239
242 | 237
246 | | 225 | | 208 | 209 | 217
252 | 228
271 | | 241
291 | 243
293 | 241
288 | | 240
269 | 239
263 | 238
251 | 238
246 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | | TABL | E II | ı | HOURLY | ME AN | S OF | VERT | ICAL | COMP | ONENT | OF MA | GNET | IC IN | TENS | TA YT | ABIN | GER | | | | | |--------------------------------------|------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | U. T. | . 0 ¹ | 1 | h 2 | 2 ^h : | 3 h | 4 ^h | 5 h | 6 ^h | 7 ^h 8 | 3 ^h 9 |) ^h 1 | 0 ^h 1 | 1 h | 12 ^h 1 | 3 h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h 18 | 8 ^h 1 | 9 ^h 2 | 0 h 2 | 21 ^h 2 | 2 ^h 2 | 3 ^h 24 | | Septem | ber | | | | | ···· | | | | 43000 | γ+ | Tabu | lar Qı | antiti | es (1 | n γ) | | | | | | | | | | | 1
2
3
4
5 | *
** | 251
244
241
215
239 | 248
245
241
224
236 | 245
244
238
234
242 | 245
245
236
245
247 | 246
245
234
255
252 | 244
245
239
257
257 | 245
245
241
252
257 | 243
244
234
253
254 | 236
236
206
253
250 | 228
226
217
249
236 | 217
220
225
241
227 | 213
213
239
236
228 | 215
216
239
244
235 | 224
230
246
255
246 |
234
240
266
257
258 | 245
243
289
256
269 | 249
244
302
256
276 | 249
241
316
263
275 | 248
240
336
264
270 | 249
242
335
268
262 | 250
243
301
266
258 | 262 | 248
242
240
259
249 | 245
242
230
255
249 | | 6
7
8
9
10 | *
* | 249
249
233
253
250 | 249
239
244
253
249 | 250
232
252
253
249 | 252
235
259
253
249 | 254
237
261
253
249 | 256
237
262
253
249 | 258
243
266
255
253 | 255
241
264
254
253 | 248
241
253
251
249 | 239
239
242
245
243 | 233
229
239
238
237 | 229
226
234
233
238 | 228
229
233
232
233 | 233
234
234
234
231 | 245
252
234
237
233 | 266
272
241
243
238 | 289
286
250
248
243 | 296
285
254
253
248 | 306
294
256
253
248 | 303
293
256
254
249 | 284
259
255
254
249 | 256 | 261
258
254
253
248 | 256
258
255
252
246 | | 11
12
13
14 | **
** | 245
250
269
254
242 | 245
251
257
243
236 | 244
249
239
237
229 | 245
246
231
239
239 | 245
248
231
234
236 | 248
250
224
229
246 | 253
252
216
239
254 | 249
249
224
237
249 | 243
241
230
233
247 | 238
240
228
230
240 | 229
234
223
233
236 | 228
234
234
242
240 | 232
241
259
264
250 | 242
250
275
280
259 | 250
255
277
293
269 | 251
257
289
297
299 | 270
256
290
306
303 | 279
255
285
333
313 | 280
259
278
297
299 | 278
262
278
280
283 | 272
269
274
279
269 | 270
259
273 | 254
269
253
253
255 | 250
270
249
239
258 | | 16
17
18
19
20 | | 258
233
224
245
229 | 256
225
232
248
239 | 251
221
233
249
245 | 256
213
223
248
249 | 258
235
233
242
253 | 259
239
234
248
252 | 260
245
241
254
254 | 260
246
249
258
254 | 262
244
244
251
253 | 253
240
247
254
253 | 243
236
247
252
249 | 238
240
247
253
249 | 237
248
252
258
247 | 243
259
260
263
249 | 247
269
269
259
260 | 252
289
269
267
272 | 258
306
274
275
283 | 268
308
290
280
283 | 269
300
275
270
273 | 270
288
269
269
269 | 269
276
260
259
265 | 249
253
262 | | 241
245
219
236
256 | | 21
22
23
24
25 | **
** | 250
250
227
245
168 | 253
252
232
244
197 | 251
252
246
242
213 | 249
252
251
241
183 | 239
254
249
240
171 | 234
252
236
243
174 | 242
254
232
245
196 | 248
259
243
255
225 | 250
254
251
253
258 | 255
250
250
252
267 | 254
254
247
249
278 | 249
249
245
254
275 | 253
247
242
267
285 | 257
253
252
292
294 | 265
262
253
352
305 | 272
274
257
407
315 | 277
289
259
470
340 | 285
285
258
427
341 | 285
275
258
368
326 | 272
275
258
278
304 | 269
272
257
266
294 | 256
253
275 | 262
261
255
262
268 | 249
247
253
186
270 | | 26
27
28
29
30 | *
* | 268
263
263
259
249 | 260
263
258
258
251 | 246
258
257
258
249 | 249
255
256
256
248 | 261
258
256
253
252 | 264
260
255
251
254 | 270
264
260
254
258 | 271
267
260
254
259 | 268
263
252
248
260 | 258
256
245
241
256 | 252
247
240
235
244 | 248
238
235
228
237 | 254
238
235
231
237 | 263
246
242
238
242 | 264
251
248
245
247 | 271
257
254
254
251 | 272
258
258
264
254 | 268
257
258
269
255 | 265
256
259
267
255 | 268
256
259
266
253 | 268
258
258
263
258 | 268
261
260
264
262 | 268
263
258
264
263 | 264
264
260
254
263 | | Mean > | * | 244
255 | | | 243
252 | 244 | 245
250 | 249
253 | 250
253 | 248
247 | 244 | 240
233 | 238
229 | 243
229 | 251
234 | 260
239 | 271 | 280
252 | 283
255 | 278
255 | 272
255 | 266 | | 256
254 | | | Mean ? | | | | 232 | | 223 | | | 240 | | 240
241 | | 250 | | - | | 247321 | - | | 325 | | 255
282 | | 256 | | | Octobe | er | | | | | | | | | 43000 | γ+ | Tabu] | ar Qu | antitie | es (in | ι γ) | | | | | | | | | | | 1
2
3
4
5 | * * | 264
265
204
261
259 | 262
259
229
263
258 | 252
258
232
264
258 | 239
258
233
262
258 | 235
247
218
262
258 | 209 | 232
237 | 242
238
252
272
268 | 244
240
258
268
262 | 239
243
257
262
254 | 245
254 | 227
248
259
239
237 | 228
254
263
237
235 | 230
272
278
243
239 | 238
292
278
249
244 | 245
343
278
258
252 | 249
340
277
264
257 | | 254
320
272
263
258 | 254
302
270
262
258 | 269
291
268
261
258 | 282
289
265
261
258 | 272
264
252
259
260 | 267
228
258
259
259 | | 6
7
8
9 7 | **
** | 255
254
258
253
264 | 254
254
258
239
228 | 254
253
258
227
228 | 254
253
255
228
249 | 258
254
254
234
251 | 255
253
250
238
249 | 260
256
250
244
254 | 265
258
254
245
255 | 264
259
256
246
258 | 255
255
252
242
259 | 247
246
245
241
258 | 235
237
240
239
259 | 228
231
238
247
267 | 238
237
244
262
274 | 242
242
247
283
286 | 253
251
252
312
302 | 255
260
254
317
318 | 258
265
262
318
312 | 258
270
263
326
296 | 256
272
263
323
289 | 254
276
261
316
298 | 258
273
258
299
272 | 258
268
258
284
239 | 257
261
257
272
238 | | 11
12
13
14
15 | | 247
248
253
239
244 | 237
241
258
241
254 | 232
228
248
249
259 | 225
244
249
254
259 | 237
253
252
260
259 | 241
252
242
252
250 | 251
248
244
240
252 | 253
244
254
248
259 | 254
246
258
258
258 | 249
247
257
255
259 | 248
248
252
259
254 | 255
252
248
261
254 | 264
267
250
265
259 | 268
290
258
274
273 | 278
292
265
287
286 | 308
289
272
288
298 | 321
298
288
287
302 | 304
292
299
281
301 | 300
292
293
281
294 | 298
277
280
272
285 | 290
269
273
262
277 | 264
271
268
261
272 | 264
266
254
263
253 | 262
258
250
243
224 | | 16
17
18
19
20 | | 239
251
258
257
258 | 245
242
258
257
254 | 248
247
254
255
243 | 250
249
257
254
245 | 252
248
257
252
252 | 257 | 254
253
258
255
262 | 260
258
255
257
262 | 264
254
248
254
261 | 262
246
245
247
260 | 254
239
242
243
258 | 253
243
242
244
253 | 262
251
241
250
258 | 266
259
248
252
263 | 276
268
255
262
272 | 295
284
270
274
282 | 287
283
277
287
282 | 281
278
273
294
278 | 276
281
273
302
273 | 269 | 267
269
274
271
268 | 264
267
270
271
257 | 262
265
258
268
255 | 258
260
259
264
234 | | 21
22
23
24
25 | | 234
251
251
255
257 | 242
245
251
238
253 | 247
244
252
240
251 | 248
248
253
241
251 | 255
252
256
245
253 | 254 | 258
252
245
254
255 | 263
257
247
259
258 | 262
258
249
260
258 | 256
252
247
248
251 | 244
245
240
234
243 | 242
243
241
240
239 | 242
242
245
247
242 | 248
248
254
255
244 | 252
251
262
258
248 | 259
257
270
260
252 | 262
257
276
260
253 | 267
258
278
259
252 | 272
258
278
258
253 | 268
258
281
257
254 | 264
258
274
257
254 | 261
257
270
256
254 | 258
258
266
260
255 | 254
253
260
262
255 | | 26 *
27 *
28 *
29 *
30 * | c | 253
251
247
246
246 | 251
252
247
246
247 | 251
252
247
246
247 | 251
250
247
246
247 | 250
251
250
246
247 | 250
247
247
243
245 | 251
249
247
242
243 | 252
254
248
243
243 | 251
252
247
241
242 | 248
243
243
237
238 | 242
238
241
230
230 | 240
236
237
225
221 | 240
236
238
227
225 | 246
241
243
237
233 | 247
247
243
242
239 | 249
248
246
243
247 | 249
246
244
242
248 | 249
244
243
243
247 | 248
244
243
246
247 | 248
247
243
247
248 | 249
247
244
247
247 | 249
247
247
247
246 | 250
247
247
247
244 | 250
247
246
247
246 | | 31 | | 246 | 246 | 245 | 246 | 247 | 246 | 243 | 243 | 242 | 239 | 233 |
231 | 234 | 238 | 241 | 246 | 247 | 245 | 247 | 247 | 246 | 248 | 251 | 251 | | Mean
Mean * | | 251
249 | 249
249 | 247
249 | 248
248 | 250
249 | 248
246 | 250
246 | 254
248 | 254
247 | | 245
236 | 243
232 | 246
233 | 253
240 | 260
244 | 270
247 | 274
246 | 273245 | 272
246 | 269
247 | 266
247 | 263
247 | 258
247 | 253
247 | | Mean * | *
 | 255 | 244 | 240 | 248 | 249 | 245 | 246 | 248 | 250 | 250 | 249 | 250 | 259 | 274 | 288 | 309 | 315 | 310 | 306 | 295 | 290 | 281 | 261 | 244 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | | TABL | E III | I | HOURLY | ME AN | s of | VERT | ICAL | COMP | ONENT (| OF MA | GNET1 | C IN | TENSI | TY A' | r ABIN | GER | | | · · | | |----------------------------------|----------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | U.T. | o ^h | 1 | h 2 | h 3 | sh 4 | h 5 | ₅ h | 6 ^h 7 | ,h 8 | 3 ^h 9 | ^h 1 | 0 ^h 1 | 1 ^h | 12 ^h 1 | 3 ^h 1 | 4 ^h 1 | 5 ^h 1 | 6 ^h 1 | 7 ^h | 18 ^h 1 | .9 ^h 2 | 0 ^h 2 | 1 ^h 2 | 2 ^h 2 | 3 ^h 24 ^h | | Novembe | er | | | | | | | | | 43000 | Y + | Tabu: | lar Qu | antiti | es (in | η γ) | | | - | | | | | | | | 1
2
3 *
4
5 * | | 251
248
244
234
247 | 248
247
245
237
245 | 247
247
247
241
246 | 247
242
247
243
245 | 247
241
247
245
247 | 247
242
247
248
250 | 244
242
244
248
249 | 245
245
245
248
249 | 244
246
246
248
250 | 238
240
241
242
245 | | 237
232
236
238
247 | 237
234
234
241
248 | 241
239
240
248
249 | 247
244
247
254
253 | 247
249
247
262
251 | 247
250
247
260
248 | 247
247
247
258
248 | 247
247
247
258
248 | 247
247
249
257
248 | 247
246
251
254
248 | 248
245
248
252
248 | 252
245
247
252
248 | 251
244
241
250
248 | | 6 *
7 *
8 *
9 *
10 * | *
* | 247
243
241
248
233 | 246
243
240
237
229 | 245
243
241
241
244 | 244
243
241
243
257 | 244
243
241
243
259 | 246
241
243
243
263 | 246
241
242
243
261 | 248
243
243
244
260 | 249
244
242
248
263 | 245
242
242
245
263 | 238
238
242
247
260 | 237
239
246
246
267 | 240
238
248
254
271 | 241
236
248
272
283 | 245
242
254
288
298 | 243
241
264
291
285 | 242
243
268
297
282 | 243
244
269
295
286 | 244
244
271
288
285 | 246
244
273
278
274 | 246
245
268
289
269 | 246
247
263
262
246 | 248
248
257
238
243 | 244
247
250
225
233 | | 11 *
12
13
14
15 | * | 231
258
250
254
260 | 213
253
252
253
257 | 239
241
249
254
253 | 247
240
250
254
243 | 252
250
251
254
245 | 255
252
254
256
249 | 255
253
255
254
251 | 254
256
258
250
250 | 250
256
259
253
247 | 249
259
254
249
243 | 246
259
254
250
245 | 252
260
259
258
249 | 255
262
265
262
250 | 267
265
267
266
254 | 305
274
269
268
258 | 316
275
269
271
260 | 324
274
273
274
261 | 324
269
269
278
259 | 306
270
267
269
259 | 291
268
262
267
259 | 274
267
260
269
259 | 264
264
259
266
258 | 269
259
259
264
255 | | | 16
17
18
19 * | * | 253
253
253
254
255 | 249
254
252
252
253 | 249
254
252
252
253 | 244
255
250
251
253 | 245
254
250
252
255 | 246
255
253
244
259 | 249
254
253
240
259 | 249
254
254
244
260 | 249
255
253
244
259 | 244
250
246
251
255 | 248
249
240
257
253 | 252
249
239
259
254 | 255
249
242
257
258 | 259
251
248
264
258 | 262
255
253
269
260 | 264
258
256
274
262 | 265
260
260
277
264 | 264
259
263
278
260 | 263
258
264
279
264 | 261
256
263
280
263 | 260
256
263
284
261 | 259
256
262
279
259 | 259
256
259
269
258 | 249
255
258
259
258 | | 21
22
23
24
25 | | 256
260
255
250
263 | 255
259
254
253
259 | 254
258
254
253
258 | 252
257
253
253
255 | 252
258
249
253
255 | 254
259
249
253
254 | 253
258
249
253
252 | 255
256
249
251
249 | 256
254
249
249
246 | 252
252
243
244
247 | 249
252
243
240
245 | 246
251
242
239
244 | 252
249
243
241
246 | 255
253
245
247
245 | 261
259
249
253
251 | 259
259
253
250
254 | 266
260
255
252
256 | 263
263
258
249
253 | 265
264
259
249
252 | 272
263
258
263
254 | 276
263
257
269
255 | 274
260
258
272
255 | 268
258
256
269
255 | 263
256
250
266
255 | | 26 *
27
28
29
30 | | 255
255
250
250
252 | 255
254
251
250
251 | 254
254
250
250
250 | 253
253
249
249
250 | 253
251
246
244
250 | 254
252
249
245
249 | 252
250
249
244
246 | 250
245
244
244
246 | 252
244
244
245
246 | 250
241
242
241
241 | 246
240
236
235
240 | 247
237
235
234
238 | 246
240
238
233
236 | 249
244
240
239
243 | 254
254
246
245
247 | 253
254
250
250
250 | 254
254
250
251
253 | 254
250
250
250
250
252 | 251
251
250
250
253 | 253
246
250
257
258 | 254
249
250
258
260 | 255
250
250
260
257 | 256
250
250
255
256 | 256
252
250
255
253 | | Mean | | 250 | 248 | 249 | 249 | 249 | 250 | 250 | 250 | 250 | 247 | 245 | 246 | 247 | 252 | 259 | 261 | 262 | 262 | 261 | 260 | 260 | 257 | 255 | 252 | | Mean * Mean * | * | 247
241 | 247
234 | 247243 | 246
248 | 247
249 | 248
250 | 246
248 | 247249 | 248
249 | 245
250 | 240
250 | 241
254 | 241
257 | 243
267 | 248
283 | 247
286 | 247
290 | 247
290 | 247
286 | 248
279 | 249
277 | 249
263 | 249
255 | 247
246 | | Decembe | er | | | | | | | | | 43000 | Y + | Tabu] | ar Qu | antitie | es (ir | 1 γ) | | <u></u> | | | | | | | | | 1
2
3 *
4
5 | ***** | 253
250
250
245
244 | 245
249
250
244
236 | 245
250
250
243
233 | 249
249
250
244
233 | 249
249
249
245
228 | 250
250
249
246
233 | 249
250
248
245
239 | 244
248
248
241
241 | 244
246
246
241
241 | 238
243
243
240
242 | 242
240
242
236
236 | 243
239
241
236
236 | 240
237
240
234
237 | 238
240
240
234
240 | 244
245
244
240
244 | 246
250
244
244
247 | 252
259
248
254
251 | 250
263
250
255
252 | 250
259
250
255
253 | 252
256
250
254
252 | 251
254
250
250
253 | 250
252
249
250
251 | 250
252
248
249
250 | 250
251
247
248
248 | | 6 *
7
8
9 *
10 | | 239
251
255
250
250 | 225
250
254
247
254 | 229
250
252
249
247 | 230
250
250
242
241 | 236
250
250
242
244 | 241
250
250
244
248 | 246
250
246
242
245 | 249
249
244
240
248 | 251
249
250
241
247 | 250
245
250
244
248 | 250
241
249
245
248 | 249
240
248
246
250 | 250
243
249
248
249 | 256
246
254
251
251 | 264
250
254
256
256 | 266
256
254
257
259 | 270
260
255
260
260 | 275
263
254
264
258 | 282
266
252
269
254 | | 276
270
254
260
254 | 269
261
254
254
254 | 258
258
253
258
254 | 252
257
252
255
256 | | 11
12 **
13 **
14
15 | | 255
250
256
251
250 | 254
250
253
250
241 | 250
249
250
250
247 | 247
241
240
248
246 | 246
241
240
246
244 | 244
243
244
246
244 | 240
241
245
244
246 | 246 | 246
244
243
246
247 | 244
235
241
245
246 | 245
238
241
246
248 | 249
240
243
249
250 | 250
241
243
248
247 | 250
249
249
254
250 | 254
250
255
260
254 | 260
259
263
266
261 | 261
266
270
270
263 |
261
276
271
266
260 | 264
274
264
264
260 | 269
270
260
260
260 | 270
270
260
260
260 | 260
264
257
256
258 | 256
261
256
254
254 | 251
260
252
250
247 | | 16
17 *
18
19
20 * | | 250
246
245
245
251 | 250
248
244
244
251 | 250
247
243
245
251 | 249
248
244
244
249 | 248
249
245
246
250 | 247
249
246
245
251 | 249
247
245
244
251 | 246 | 247
246
243
244
246 | 246
244
237
240
242 | 248
241
236
236
237 | 249
243
236
239
240 | 245
241
240
240
240 | 245
245
241
240
237 | 251
246
247
247
241 | 252
249
248
253
250 | 256
254
250
256
255 | 254
252
250
255
256 | 252
253
250
257
257 | 253
251
250
259
258 | 254
251
256
261
257 | 251
250
253
260
254 | 250
250
251
255
253 | 248
248
248
251
251 | | 21 *
22
23 *
24
25 | * | 247
245
250
251
250 | 246
245
247
249
250 | 247
246
247
248
247 | 247
246
246
248
246 | 247
245
246
248
243 | 246
246
247
250
241 | 244
245
247
250
241 | | 243
244
243
246
241 | 237
238
239
245
240 | 234
234
237
246
240 | 236
235
241
246
241 | 238
236
236
244
237 | 236
237
235
245
241 | 238
241
241
246
246 | 244
244
245
247
246 | 248
250
250
251
245 | 247
252
252
251
248 | 250
255
255
251
248 | 248
257
255
251
248 | 248
262
255
253
249 | 247
258
255
254
248 | 246
255
251
247
250 | | | 26
27
28
29
30 | | 249
250
255
249
243 | 251
247
251
248
244 | 244
245
251
248
245 | 242
245
250
248
245 | 241
244
245
248
244 | 240
246
246
249
245 | 239
241
245
246
244 | 243 | 241
240
238
239
241 | 240
237
231
237
236 | 240
237
235
241
234 | 241
240
239
246
237 | 241
241
238
246
240 | 244
245
242
251
241 | 246
251
246
253
245 | 247
251
250
258
244 | 249
252
252
261
247 | 250
250
250
258
246 | 251
251
251
256
246 | 253 | 248
252
248
251
248 | 247
253
246
248
246 | 247
254
246
240
244 | 246
251
247
240
246 | | 31 * | | 245 | 244 | 244 | 243 | 243 | 244 | 243 | 241 | 237 | 235 | 235 | 235 | 235 | 236 | 238 | 241 | 243 | 246 | 246 | 246 | 247 | 246 | 244 | 244 | | Mean
Mean * | | 249 | 247
248 | 247 | 245
247 | 245
248 | 246
248 | 245
247 | | | 241
240 | | 242
239 | 242
239 | 244
239 | 248
241 | 252
246 | 255
250 | 256
250 | 256
251 | 256
251 | 256
251 | 253
249 | 251
248 | 250
247 | | Mean ★ | k | 248
249 | | 248
245 | | | | 244 | | | | 242 | | 244 | | 253 | 258 | | 268 | 269 | | | | 257 | 255 | ^{*} International Quiet Day. ** International Disturbed Day. | | 1. | ABLE IV. | | IN MEA | | XTREME | VALUES | | ZONTAL | | | HECORDE | BI TH | | | INTENS | τ | | |-------------------------------------|--------------------------------------|-------------------------------|---|--------------------------------------|--|--------------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---|------------------------------|---------------------------------|--|---------------------------------|---------------------------------|--|-----------------------------| | Date | Mean | | | | | | Mean | | | | | | Mean | | | | | | | | Daily
Value | Maximu | m | | imum | Range | Daily
Value | Maxi | mum | Min | imum | Range | Daily
Value | Maxin | mum | Mir | nimum | Range | | January | 9°+
' | U.T.
h m | 9°+ | 9°+ | U.T.
h m | • | 18000
Y + | U. T. | 18000
Y ⁺ | 18000
Y [†] | U.T.
h m | Y | 43000
Y + | U.T.
h m | 43000
Y ⁺ | 43000
Y ⁺ | U.T. | Y | | 1
2
3
4 **
5 ** | 48.0
47.4
47.7
47.5
46.4 | 13 32 5
18 13 5
15 5 5 | 53. 2
53. 2
55. 4
58. 1
53. 7 | 44.9
36.3
32.7
37.3
37.9 | 9 43
17 20
22 19
19 42
16 20 | 8.3
16.9
22.7
20.8
15.8 | 586
580
572
564
565 | 6 4
7 13
22 24
11 23
18 32 | 604
601
604
602
611 | 561
527
520
528
521 | 15 21
17 10
18 32
15 20
18 51 | 43
74
84
74
90 | 231
234
237
241
242 | 16 18
17 29
19 35
15 43
20 3 | 242
262
266
261
265 | 219
216
220
226
228 | 11 31
12 21
12 0
11 49
7 31 | 23
46
46
35
37 | | 6
7
8
9 *
10 * | 46.3
47.2
46.7
46.9
46.8 | 12 3 5
12 59 5
13 40 5 | 51.0
51.8
51.0
50.1 | 39.9
41.4
43.1
44.3
44.2 | 0 13
22 26
2 32
9 50
9 13 | 11.1
10.4
7.9
5.8
5.3 | 559
571
579
581
589 | 21 51
7 18
7 10
7 6
17 43 | 585
591
591
598
601 | 520
541
565
564
575 | 12 9
11 34
9 8
10 27
10 40 | 65
50
26
34
26 | 244
243
241
239
235 | 15 2
16 16
16 18
18 35
5 10 | 271
253
250
247
244 | 229
235
232
227
222 | 6 21
11 5
12 4
12 0
12 8 | 42
18
18
20
22 | | 11 *
12 *
13 *
14 | 46.9
46.8
47.2
47.4
46.8 | 13 16 5
12 58 5
16 22 5 | 19.9
50.0
51.2
52.1 | 44.8
45.0
44.4
44.4
42.4 | 9 7
7 55
7 57
8 9
23 11 | 5.1
5.0
6.8
7.7
9.3 | 592
592
590
587
584 | 8 2
18 8
6 40
6 40
18 33 | 608
602
604
601
605 | 574
578
565
567
556 | 11 17
11 19
10 50
10 56
10 50 | 34
24
39
34
49 | 231
231
231
323
233 | 5 47
18 45
22 36
19 30
22 30 | 241
238
239
243
246 | 217
221
219
225
225 | 12 10
12 28
12 0
17 3
17 0 | 24
17
20
18
21 | | 16 **
17
18
19
20 | 45.5
46.0
46.3
46.4
46.5 | 13 0 5
13 39 5
13 48 5 | 51.4
51.2
52.5
51.3 | 33.8
38.9
42.0
39.9
41.6 | 4 59
1 10
1 50
23 28
0 0 | 27.6
12.3
10.5
11.4
9.9 | 563
556
565
569
575 | 3 30
21 30
23 41
23 1
6 40 | 638
603
586
601
597 | 497
519
540
532
557 | 20 34
10 18
11 22
11 38
18 53 | 141
84
46
69
40 | 241
248
246
239
242 | 18 46
0 9
18 20
22 7
20 36 | 281
263
257
249
251 | 197
238
235
227
231 | 4 10
12 55
12 10
12 45
16 3 | 84
25
22
22
20 | | 21
22
23
24
25 ** | 46.1
46.8
46.0
45.6
47.3 | 17 29 5
17 52 4
7 30 5 | 19.5
12.9
19.9
10.0 | 41.6
42.8
42.8
40.9
35.1 | 1 40
20 54
1 34
19 19
23 2 | 7.9
10.1
7.1
9.1
24.0 | 580
579
581
571
531 | 1 48
7 8
8 2
23 59
3 51 | 595
601
592
625
658 | 562
554
565
534
461 | 11 30
17 40
11 40
7 49
11 30 | 33
47
27
91
197 | 238
238
236
240
258 | 1 19
18 13
5 26
19 28
15 14 | 246
248
244
255
342 | 230
226
225
226
200 | 12 59
13 23
10 21
6 58
6 45 | 16
22
19
29
142 | | 26 **
27
28
29
30 | 44.9
46.4
45.9
46.4
45.9 | 13 10 5
13 31 5
14 33 5 | 55.4
52.9
52.3
54.8 | 30.2
35.4
41.3
40.5
36.0 | 3 48
20 20
22 22
4 42
23 10 | 25.2
17.5
11.0
14.3
15.9 | 532
559
566
567
575 | 4 31
20 21
0 10
20 6
21 24 | 588
621
590
591
592 | 531 | 10 30
11 23
11 41
11 9
23 53 | 94
94
52
60
37 | 254
247
244
241
237 | 16 35
20 8
0 2
18 35
22 44 | 278
262
254
252
249 | 230
235
232
231
226 | 5 6
11 48
12 23
12 39
12 59 | 48
27
22
21
23 | | 31 | 46.1 | 13 57 5 | 50.5 | 40.1 | 23.50 | 10.4 | 574 | 23 10 | 591 | 550 | 10 57 | 41 | 237 | 8 0 | 245 | 223 | 13 3 | 22 | | Mean * Mean ** | 46.6
46.9
46.3 | - 5 | 2.5
0.1
7.5 | 40.2
44.5
34.9 | -
-
- | 12.4
5.6
22.7 | 572
589
551 | -
-
- | 602
603
619 | 541
571
500 |
-
- | 61.3
31.4
119.2 | 240
233
247 | -
-
- | 256
242
285 | 225
221
216 | -
- | 31.3
20.6
69.2 | | February | 9°+ | U.T. 9 | 9°+ | 9°+ | U.T.
h m | , | 18000
Y | U.T.
h m | 18000
Y | 18000
Y + | U.T.
h m | Υ | 43000
Y | U.T. | 43000
Y | 43000
Y | U.T.
h m | Υ | | 1
2
3
4
5 | 45.9
47.3
47.2
46.3
46.7 | 13 27 5
17 51 5
12 47 5 | 1.5
2.5
3.2
1.9
3.6 | 38.3
42.0
43.2
40.1
43.0 | 0 22
9 26
9 30
2 40
9 37 | 13.2
10.5
10.0
11.8
10.6 | 576
577
580
578
581 | 5 20
19 6
19 53
1 27
18 51 | 596
592
605
611
591 | 540
547
520 | 11 48
12 40
10 58
13 0
10 40 | 52
52
58
91
33 | 234
235
234
231
233 | 20 26
22 38
0 3
23 12
18 30 | 246
245
243
244
239 | 225
222
210
216
217 | 6 51
12 31
10 58
2 40
10 54 | · 21 23 33 28 22 | | 6
7
8 **
9 ** | 46.6
47.4
46.3
44.0
46.3 | 13 9 5
14 18
5
14 33 5 | 2.8
6.4
9.9
0.5
7.3 | 41.8
42.6
29.6
27.9
58.4 | 9 23
20 51
8 17
22 13
21 5
0 30 | 11.0
13.8
30.3
22.6
18.9 | 582
581
558
562
564 | 6 36
8 22
1 38
21 40
8 3 | 615
607
604
591
602 | 550
501
529 | 12 0
14 10
18 41
10 58
11 31 | 64
57
103
62
82 | 234
233
244
239
242 | 18 30
19 29
18 54
20 44
15 19
17 38 | 245
246
289
260
257 | 217
208
222
224
219 | 12 0
11 4
10 58
2 59
12 6 | 28
38
67
36
38 | | 11
12
13
14 * | 46.2
46.4
46.7
46.9
46.5 | 14 42 5
14 5 5
14 0 5 | 2. 0
2. 4
3. 2
2. 8
1. 9 | 40.5
39.5
41.3
40.7
39.5 | 8 56
9 17
9 36
9 38
9 21 | 11.5
12.9
11.9
12.1
12.4 | 574
580
581
584
583 | 20 21
6 30
7 2
6 51
6 41 | 600
601
602
601
605 | 544
543
546 | 11 15
11 30
11 32
12 19
11 15 | 66
57
59
55
64 | 235
235
234
232
231 | 8 15
7 47
8 3
6 20
9 20 | 248
245
243
239
241 | 214
220
218
220
215 | 12 3
12 55
13 42
12 2
12 11 | 34
25
25
19
26 | | 16 **
17 **
18
19 **
20 | 46.3
43.9
45.6
44.1
45.5 | 15 42 5
12 31 5
15 22 5 | 0.8
5.0
3.2
9.9
1.8 | 34.0
25.6
39.7
32.5
38.2 | 21 13
0 54
1 16
21 31
0 13 | 26.8
29.4
13.5
27.4
13.6 | 541
528
555
558
568 | 4 10
5 13
0 38
23 59
0 0 | 630
568
583
618
618 | 527
529 | 12 25
0 17
10 42
18 20
11 11 | 179
104
56
89
73 | 254
243
247
252
238 | 17 3
16 48
16 8
18 30
19 29 | 341
280
264
278
252 | 212
201
233
232
216 | 10 45
3 46
11 59
23 59
3 31 | 129
79
31
46
36 | | 21 *
22 *
23 *
24
25 | 45.5
45.8
46.0
45.9
46.0 | 13 24 50
14 22 5 | 9.7
0.4
1.0
3.7
3.3 | 39.0
40.9
40.8
39.7
36.3 | 9 6
9 4
9 22
9 23
21 56 | 10.7
9.5
10.2
14.0
17.0 | 575
585
584
588
580 | 23 46
6 10
0 18
6 18
7 9 | 591
596
596
611
607 | 561
552
542 | 11 40
11 18
11 21
12 18
13 30 | 57
35
44
69
72 | 240
237
234
235
236 | 8 35
8 13
8 30
19 29
18 38 | 250
247
245
247
251 | 225
221
219
219
220 | 11 0
12 10
13 30
12 15
11 48 | 25
26
26
28
31 | | 26
27
28 | 45.0
45.5
45.6 | 13 14 5 | 2.9
2.4
3.2 | 33.2
39.8
37.4 | 2 24
0 11
23 10 | 19.7
12.6
15.8 | 578
580
587 | 0 20
7 7
7 10 | 618
598
605 | 557 | 12 37
11 55
10 16 | 72
41
31 | 235
238
239 | 16 36
16 20
22 20 | 249
249
252 | 214
219
224 | 12 4
12 26
12 3 | 35
30
28 | | Mean * Mean ** | 46.0
46.1
44.9 | - 5 | 3.5
1.2
7.2 | 38.1
40.2
29.9 | -
- | 15.5
11.0
27.3 | 573
582
549 | <u> </u> | 602
598
602 | 535
547
495 | -
-
- | 67.0
51.0
107.4 | 238
235
246 | -
-
- | 255
244
290 | 219
220
218 | -
- | 36. 2
24. 4
71. 4 | ^{*} International Quiet Day. ** International Disturbed Day. | | 1 | TABLE IV DA | ILY MEAN AND E | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY T | HE MAGNETOGRA | PHS | | |---------|------------------------|-------------|----------------|---------|------------------------|-----------------------|-------------|---------|------------------------|-----------------------|------------|-------| | | 3 | DECLINAT | TION WEST | | | HORIZONTAL | . INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | | March | 9°+
, | U.T. 9°+ | 9°+ U.T. | , | 18000
Y | U.T. 18000
h m Y + | 18000 U.T. | Υ | 43000
Y + | U.T. 43000
h w Y + | 43000 U.T. | Υ | | 1 * | 45.5 | 13 25 53.1 | 40.5 8 5 | 12.6 | 584 | 22 3 601 | 561 10 13 | 40 | 238 | 17 36 248 | 223 12 4 | 25 | | 2 ** | 45.8 | 19 6 65.9 | 23.9 23 16 | 42.0 | 559 | 8 46 714 | 457 13 46 | 257 | 256 | 20 47 366 | 190 10 6 | 176 | | 3 ** | 41.6 | 23 31 65.8 | 6.2 18 59 | 59.6 | 477 | 18 29 645 | 233 23 41 | 412 | 259 | 18 29 443 | 99 23 41 | 344 | | 4 | 44.4 | 5 2 61.6 | 16.6 0 0 | 45.0 | 519 | 19 6 600 | 427 8 31 | 173 | 250 | 14 37 296 | 176 2 2 | 120 | | 5 | 44.8 | 13 48 52.3 | 38.1 9 1 | 14.2 | 554 | 22 59 577 | 529 14 14 | 48 | 259 | 7 53 273 | 244 2 20 | 29 | | 6 * | 45.2 | 12 52 54.7 | 38.5 9 30 | 16.2 | 565 | 21 42 584 | 536 10 36 | 48 | 251 | 16 19 264 | 226 11 42 | 38 | | 7 | 45.8 | 13 21 58.0 | 36.2 9 1 | 21.8 | 568 | 17 58 610 | 503 12 52 | 107 | 245 | 16 50 259 | 218 12 0 | 41 | | 8 ** | 47.3 | 14 54 72.3 | 13.2 23 46 | 59.1 | 535 | 14 50 657 | 389 23 10 | 268 | 281 | 17 18 420 | 226 23 10 | 194 | | 9 | 44.2 | 13 59 55.3 | 26.5 1 9 | 28.8 | 511 | 0 0 587 | 426 0 49 | 161 | 262 | 16 48 301 | 209 0 44 | 92 | | 10 * | 45.9 | 13 40 56.4 | 38.4 8 44 | 18.0 | 555 | 20 19 587 | 507 10 59 | 80 | 258 | 8 29 274 | 244 12 20 | 30 | | 11 * | 45.5 | 14 8 54.2 | 38.1 8 22 | 16.1 | 566 | 24 0 588 | 518 12 13 | 70 | 250 | 7 25 267 | 235 13 21 | 32 | | 12 | 46.2 | 15 11 58.1 | 37.0 8 1 | 21.1 | 582 | 5 45 631 | 511 12 17 | 120 | 246 | 18 50 257 | 223 12 18 | 34 | | 13 | 46.1 | 13 59 57.3 | 37.8 8 30 | 19.5 | 582 | 19 30 627 | 512 12 22 | 115 | 246 | 7 57 264 | 220 12 23 | 44 | | 14 | 46.0 | 12 59 52.9 | 37.6 8 1 | 15.3 | 578 | 5 23 620 | 518 13 29 | 102 | 260 | 16 30 326 | 232 0 43 | 94 | | 15 ** | 46.2 | 14 29 62.7 | 31.6 10 38 | 31.1 | 578 | 0 43 596 | 440 8 51 | 156 | 270 | 16 16 386 | 237 8 58 | 149 | | 16 | 43.6 | 15 20 52.8 | 32.2 22 18 | 20.6 | 536 | 18 27 596 | 513 12 22 | 83 | 271 | 17 47 311 | 248 23 54 | 63 | | 17 | 43.7 | 0 40 52.3 | 34.5 0 0 | 17.8 | 546 | 20 53 588 | 510 9 55 | 78 | 254 | 17 48 278 | 215 0 58 | 63 | | 18 | 44.6 | 14 4 52.3 | 36.2 20 52 | 16.1 | 562 | 20 56 624 | 528 11 33 | 96 | 256 | 16 25 280 | 241 12 6 | 39 | | 19 | 43.9 | 13 8 53.5 | 37.5 20 4 | 16.0 | 566 | 20 12 603 | 536 10 16 | 67 | 255 | 17 22 271 | 238 12 16 | 33 | | 20 | 44.3 | 14 49 52.7 | 38.0 9 0 | 14.7 | 575 | 7 0 590 | 544 10 49 | 46 | 249 | 20 7 268 | 226 11 5 | 42 | | 21 * | 45.4 | 14 43 55.5 | 38.7 22 42 | 16.8 | 578 | 21 20 598 | 546 10 28 | 52 | 247 | 17 30 261 | 224 11 55 | 37 | | 22 | 45.6 | 14 1 55.8 | 37.2 18 36 | 18.6 | 578 | 5 30 635 | 534 9 33 | 101 | 240 | 18 41 266 | 204 5 52 | 62 | | 23 | 45.1 | 12 40 57.5 | 38.3 8 0 | 19.2 | 573 | 14 55 613 | 527 17 30 | 86 | 253 | 16 40 335 | 215 11 18 | 120 | | 24 | 45.9 | 6 2 56.4 | 36.7 2 31 | 19.7 | 568 | 5 51 634 | 525 10 48 | 109 | 242 | 18 38 258 | 212 3 37 | 46 | | 25 | 44.8 | 13 24 52.8 | 37.9 24 0 | 14.9 | 568 | 19 56 609 | 526 9 18 | 83 | 243 | 17 47 265 | 220 12 18 | 45 | | 26 | 45.9 | 13 40 55.6 | 35.8 0 24 | 19.8 | 564 | 21 27 631 | 506 11 16 | 125 | 247 | 17 29 295 | 211 4 4 | 84 | | 27 | 45.5 | 16 1 52.6 | 37.9 8 18 | 14.7 | 571 | 22 8 629 | 533 12 40 | 96 | 245 | 18 26 277 | 215 11 54 | 62 | | 28 ** | 43.6 | 13 20 57.4 | 24.3 2 29 | 33.1 | 546 | 17 18 613 | 482 21 0 | 131 | 268 | 17 10 354 | 191 3 3 | 163 | | 29 | 43.2 | 13 15 54.1 | 35.2 19 39 | 18.9 | 549 | 19 53 603 | 507 10 51 | 96 | 262 | 18 28 289 | 234 11 57 | 55 | | 30 | 43.6 | 14 9 57.1 | 29.6 2 21 | 27.5 | 555 | 19 1 604 | 497 12 39 | 107 | 249 | 18 48 298 | 210 1 6 | 88 | | 31 | 45.3 | 13 5 55.5 | 36.7 7 50 | 18.8 | 562 | 1 41 590 | 517 13 40 | 73 | 257 | 15 22 288 | 231 3 37 | 57 | | Mean | 45.0 | - 56.6 | 33.1 - | 23.5 | 557 | - 612 | 497 - | 115.7 | 254 | - 298 | 217 - | 80.7 | | Mean * | 45.5 | - 54.8 | 38.8 - | 15.9 | 570 | - 592 | 534 - | 58.0 | 249 | - 263 | 230 - | 32.4 | | Mean ** | 44.9 | - 64.8 | 19.8 - | 45.0 | 530 | - 645 | 400 - | 244.8 | 267 | - 394 | 189 - | 205.2 | | April | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h m γ + | 18000 U.T. | Υ | 43000
Y + | U.T. 43000 | 43000 U.T. | Υ | | 1 * | 45.4 | 13 37 56.5 | 37.8 7 45 | 18.7 | 571 | 21 45 600 | 527 10 28 | 73 | 245 | 4 50 260 | 213 12 12 | 47 | | 2 | 45.0 | 13 19 54.9 | 36.4 9 23 | 18.5 | 581 | 6 20 606 | 543 11 41 | 63 | 247 | 17 39 265 | 222 11 52 | 43 | | 3 | 45.6 | 13 51 56.4 | 35.1 8 47 | 21.3 | 588 | 19 58 629 | 541 10 34 | 88 | 237 | 1 20 251 | 211 11 9 | 40 | | 4 | 44.6 | 12 50 58.5 | 35.3 20 30 | 23.2 | 570 | 6 39 619 | 517 12 21 | 102 | 251 | 17 20 291 | 215 11 43 | 76 | | 5 | 44.0 | 13 8 53.7 | 35.2 8 40 | 18.5 | 568 | 17 56 602 | 518 11 16 | 84 | 251 | 7 24 272 | 225 11 3 | 47 | | 6 | 45.2 | 12 3 56.5 | 35.1 8 1 | 21.4 | 576 | 2 59 629 | 500 11 55 | 129 | 244 | 15 46 266 | 213 11 57 | 53 | | 7 | 45.5 | 13 29 57.8 | 36.2 8 44 | 21.6 | 579 | 22 44 603 | 532 10 43 | 71 | 244 | 16 26 275 | 203 12 9 | 72 | | 8 | 45.5 | 13 42 57.7 | 35.1 9 5 | 22.6 | 584 | 21 52 686 | 529 10 23 | 157 | 239 | 21 53 265 | 201 12 10 | 64 | | 9 ** | 44.2 | 13 9 54.0 | 35.9 0 12 | 18.1 | 558 | 0 21 628 | 476 11 21 | 152 | 246 | 16 29 274 | 207 0 4 | 67 | | 10 | 44.4 | 14 48 53.7 | 36.2 9 20 | 17.5 | 570 | 23 24 616 | 517 11 43 | 99 | 244 | 6 50 261 | 218 13 10 | 43 | | 11 | 43.7 | 14 23 55.5 | 34.4 8 14 | 21.1 | 574 | 0 18 609 | 522 11 52 | 87 | 245 | 17 29 276 | 218 11 54 | 58 | | 12 | 44.1 | 13 46 57.8 | 33.5 21 53 | 24.3 | 573 | 21 57 615 | 531 11 20 | 84 | 244 | 17 54 268 | 218 11 59 | 50 | | 13 | 43.5 | 12 52 54.2 | 36.0 2 12 | 18.2 | 581 | 21 16 609 | 540 11 34 | 69 | 238 | 17 34 261 | 208 13 4 | 53 | | 14 | 43.4 | 13 22 54.5 | 36.1 20 38 | 18.4 | 587 | 20 42 624 | 556 12 13 | 68 | 240 | 20 22 259 | 214 10 57 | 45 | | 15 | 44.4 | 13 42 55.2 | 35.3 1 33 | 19.9 | 585 | 15 50 618 | 542 10 51 | 76 | 240 | 16 29 267 | 220 10 49 | 47 | | 16 | 43.9 | 14 29 53.3 | 37.3 24 0 | 16.0 | 579 | 1 57 616 | 545 12 33 | 71 | 242 | 18 36 269 | 212 11 56 |
57 | | 17 ** | 44.3 | 15 21 66.1 | -1.2 22 28 | 67.3 | 578 | 15 38 705 | 332 22 17 | 373 | 251 | 21 52 374 | 29 22 11 | 345 | | 18 ** | 44.6 | 13 35 60.2 | 20.3 21 27 | 39.9 | 524 | 21 32 588 | 459 11 59 | 129 | 276 | 15 47 329 | 249 11 55 | 80 | | 19 ** | 44.6 | 13 11 55.7 | 37.7 7 6 | 18.0 | 554 | 23 56 627 | 482 10 53 | 145 | 256 | 17 27 282 | 225 10 55 | 57 | | 20 ** | 44.5 | 5 33 51.0 | 34.9 18 55 | 16.1 | 571 | 0 0 624 | 524 11 14 | 100 | 248 | 19 0 282 | 226 11 25 | 56 | | 21 * | 44.5 | 13 56 49.6 | 37.6 7 51 | 12.0 | 577 | 5 10 600 | 549 7 50 | 51 | 247 | 3 20 257 | 236 11 48 | 21 | | 22 * | 44.2 | 13 51 52.8 | 36.0 9 8 | 16.8 | 584 | 23 55 600 | 552 10 17 | 48 | 241 | 7 1 253 | 216 11 46 | 37 | | 23 * | 45.2 | 12 33 54.7 | 36.4 8 10 | 18.3 | 595 | 17 52 618 | 561 10 17 | 57 | 238 | 6 40 255 | 212 12 5 | 43 | | 24 * | 45.4 | 13 53 56.3 | 36.5 8 20 | 19.8 | 591 | 21 6 610 | 540 11 40 | 70 | 238 | 5 40 251 | 215 12 0 | 36 | | 25 | 44.8 | 13 51 53.5 | 35.8 9 11 | 17.7 | 602 | 16 39 668 | 551 11 41 | 117 | 237 | 16 39 271 | 205 12 24 | 66 | | 26 | 44.1 | 13 30 53.6 | 36.1 8 20 | 17.5 | 602 | 17 2 646 | 571 13 53 | 75 | 239 | 19 1 264 | 205 12 13 | 59 | | 27 | 43.3 | 14 28 51.7 | 34.0 8 47 | 17.7 | 591 | 19 47 622 | 543 11 37 | 79 | 239 | 19 42 255 | 210 12 41 | 45 | | 28 | 44.5 | 13 24 54.9 | 35.7 7 23 | 19.2 | 591 | 19 20 615 | 558 12 17 | 57 | 236 | 17 24 255 | 200 12 5 | 55 | | 29 | 44.9 | 12 24 55.3 | 36.3 8 27 | 19.0 | 592 | 12 23 622 | 550 10 23 | 72 | 239 | 6 1 251 | 217 12 49 | 34 | | 30 | 45.1 | 12 55 54.0 | 37.4 8 39 | 16.6 | 590 | 18 3 626 | 543 10 39 | 83 | 234 | 18 27 251 | 204 12 26 | 47 | | Mean | 44.5 | - 55.3 | 34.1 - | 21.2 | 579 | - 623 | 525 - | 97.6 | 244 | - 270 | 209 - | 61.4 | | Mean * | 44.9 | - 54.0 | 36.9 - | 17.1 | 584 | - 606 | 546 - | 59.8 | 242 | - 255 | 218 - | 36.8 | | Mean ** | 44.4 | - 57.4 | 25.5 - | 31.9 | 557 | - 634 | 455 - | 179.8 | 255 | - 308 | 187 - | 121.0 | ^{*} International Quiet Day. ** International Disturbed Day. | | | TABLE IV DA | ILY MEAN AND | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY T | HE MAGNETOGRA | PHS | | |---------------------------------|------------------------------|--|---|--------------------------------------|---------------------------------|--|--|------------------------------|---------------------------------|---|---|-----------------------------| | | | DECLINA | TION WEST | | | HORIZONTAL | INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | | May | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h m Y + | 18000 U.T. | Υ | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T.
γ + h m | Y | | 1 | 44.5 | 13 42 53.4 | 37.5 8 17 | 15.9 | 588 | 3 1 617 | 549 13 16 | 68 | 239 | 17 36 261 | 216 11 26 | 45 | | 2 * | 43.4 | 13 50 50.3 | 36.4 7 54 | 13.9 | 588 | 17 23 608 | 570 10 20 | 38 | 237 | 6 2 257 | 207 12 4 | 50 | | 3 | 44.7 | 13 40 53.8 | 38.7 7 51 | 15.1 | 593 | 16 22 624 | 555 10 39 | 69 | 237 | 17 36 254 | 210 12 7 | 44 | | 4 | 44.1 | 13 30 52.9 | 35.5 7 21 | 17.4 | 593 | 18 23 625 | 562 9 31 | 63 | 234 | 18 36 248 | 200 11 50 | 48 | | 5 | 44.7 | 13 49 53.8 | 36.4 7 46 | 17.4 | 598 | 15 53 627 | 563 10 39 | 64 | 236 | 17 37 257 | 212 12 18 | 45 | | 6 | 45.2 | 13 4 54.7 | 37.8 7 50 | 16.9 | 595 | 18 27 623 | 552 10 17 | 71 | 239 | 17 24 259 | 202 11 57 | 57 | | 7 | 44.8 | 13 23 54.1 | 38.0 7 8 | 16.1 | 595 | 0 10 621 | 565 11 1 | 56 | 236 | 16 20 250 | 210 12 4 | 40 | | 8 * | 44.4 | 13 22 52.3 | 37.2 7 50 | 15.1 | 597 | 16 12 618 | 568 11 17 | 50 | 235 | 4 6 248 | 208 11 17 | 40 | | 9 * | 44.7 | 13 22 52.8 | 36.7 8 17 | 16.1 | 597 | 20 46 617 | 570 8 41 | 47 | 230 | 5 30 247 | 194 12 16 | 53 | | 10 * | 44.6 | 13 48 54.3 | 35.8 6 43 | 18.5 | 596 | 18 19 618 | 565 11 16 | 53 | 236 | 17 40 256 | 201 11 53 | 55 | | 11 | 44.0 | 13 30 55.7 | 35.1 6 17 | 20.6 | 591 | 18 51 637 | 562 10 25 | 75 | 235 | 18 38 264 | 192 12 7 | 72 | | 12 | 43.9 | 13 11 53.3 | 34.7 7 5 | 18.6 | 587 | 2 14 635 | 542 11 44 | 93 | 237 | 17 42 260 | 211 11 9 | 49 | | 13 | 43.1 | 11 58 51.9 | 32.2 7 6 | 19.7 | 595 | 18 49 644 | 555 13 24 | 89 | 235 | 20 58 261 | 203 11 30 | 58 | | 14 ** | 42.8 | 12 8 54.3 | 31.3 5 56 | 23.0 | 575 | 19 23 620 | 540 1 42 | 80 | 230 | 18 14 261 | 197 11 32 | 64 | | 15 ** | 44.4 | 13 29 55.8 | 32.9 7 10 | 22.9 | 586 | 20 41 638 | 535 15 23 | 103 | 234 | 16 20 256 | 208 11 34 | 48 | | 16 ** | 42.8 | 13 28 53.0 | 33.9 1 5 | 19.1 | 571 | 22 32 621 | 505 10 29 | 116 | 231 | 16 30 263 | 184 2 50 | 79 | | 17 | 44.5 | 12 33 54.7 | 36.6 6 59 | 18.1 | 586 | 21 12 631 | 545 13 1 | 86 | 238 | 18 45 271 | 210 12 14 | 61 | | 18 | 44.3 | 14 20 54.9 | 35.6 7 20 | 19.3 | 591 | 18 3 669 | 555 8 26 | 114 | 244 | 18 13 287 | 213 11 32 | 74 | | 19 | 44.3 | 13 50 58.2 | 33.4 6 4 | 24.8 | 578 | 17 0 614 | 539 7 39 | 75 | 238 | 17 14 258 | 193 11 48 | 65 | | 20 | 44.8 | 13 52 55.2 | 35.6 6 27 | 19.6 | 588 | 20 51 620 | 553 8 20 | 67 | 240 | 16 34 255 | 216 11 30 | 39 | | 21 | 43.6 | 13 43 53.2 | 34. 2 7 56 | 19.0 | 597 | 19 59 629 | 566 13 15 | 63 | 235 | 17 22 249 | 204 11 28 | 45 | | 22 | 45.4 | 12 59 56.2 | 38. 6 6 57 | 17.6 | 595 | 22 48 670 | 561 13 32 | 109 | 234 | 18 25 252 | 194 11 42 | 58 | | 23 ** | 43.2 | 15 20 54.9 | 24. 4 5 5 | 30.5 | 606 | 6 44 645 | 549 10 32 | 96 | 226 | 18 43 248 | 195 4 12 | 53 | | 24 ** | 44.5 | 9 11 55.8 | 18. 0 8 26 | 37.8 | 570 | 6 45 702 | 374 8 28 | 328 | 240 | 17 35 267 | 187 8 27 | 80 | | 25 | 44.3 | 12 22 55.7 | 36. 4 6 43 | 19.3 | 570 | 19 9 618 | 509 10 13 | 109 | 248 | 18 38 271 | 211 11 47 | 60 | | 26 | 45.2 | 14 3 55.4 | 36.1 7 35 | 19.3 | 585 | 22 10 648 | 508 12 8 | 140 | 244 | 17 19 284 | 209 12 8 | 75 | | 27 | 44.6 | 12 42 53.7 | 33.1 7 21 | 20.6 | 587 | 17 20 643 | 533 13 16 | 110 | 242 | 17 22 271 | 205 11 50 | 66 | | 28 | 44.3 | 14 53 57.6 | 34.0 6 25 | 23.6 | 594 | 17 10 655 | 545 12 59 | 110 | 242 | 17 12 271 | 205 11 50 | 66 | | 29 | 44.4 | 13 51 52.3 | 37.7 20 20 | 14.6 | 601 | 15 26 633 | 560 13 30 | 73 | 259 | 17 30 320 | 224 11 2 | 96 | | 30 * | 42.6 | 13 23 51.3 | 31.0 7 13 | 20.3 | 579 | 20 44 609 | 535 10 1 | 74 | 241 | 4 20 261 | 206 11 51 | 55 | | 31 | 44.6 | 12 48 54.2 | 35.7 8 16 | 18.5 | 606 | 19 24 658 | 563 8 14 | 95 | 238 | 20 30 264 | 198 12 2 | 66 | | Mean | 44.2 | - 54.2 | 34.5 - | 19.7 | 590 | - 633 | 544 - | 89.8 | 238 | - 262 | 204 - | 58.3 | | Mean * | 43.9 | - 52.2 | 35.4 - | 16.8 | 591 | - 614 | 562 - | 52.4 | 236 | - 254 | 203 - | 50.6 | | Mean ** | 43.5 | - 54.8 | 28.1 - | 26.7 | 582 | - 645 | 501 - | 144.6 | 232 | - 259 | 194 - | 64.8 | | June | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h m γ + | 18000 U.T. | Υ | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T.
γ + h m | Υ | | 1 ** | 41.9 | 0 20 53.7 | 27.4 8 2 | 26.3 | 571 | 0 21 680 | 508 9 18 | 172 | 229 | 17 38 271 | 191 3 20 | | | 2 * | 43.5 | 13 31 54.7 | 33.0 7 8 | 21.7 | 581 | 22 33 614 | 545 11 13 | 69 | 245 | 17 30 262 | 212 12 4 | 50 | | 3 | 45.2 | 13 30 57.8 | 32.5 6 53 | 25.3 | 594 | 19 54 620 | 562 10 20 | 58 | 239 | 17 29 257 | 217 11 35 | 40 | | 4 | 45.0 | 13 44 53.0 | 36.7 6 48 | 16.3 | 604 | 16 17 644 | 569 9 10 | 75 | 243 | 17 45 263 | 217 11 22 | 46 | | 5 ** | 46.1 | 13 46 55.2 | 29.9 7 43 | 25.3 | 611 | 18 6 701 | 511 8 15 | 190 | 242 | 18 6 266 | 207 11 6 | 59 | | 6 | 42.5 | 13 0 52.3 | 26.7 0 12 | 25.6 | 573 | 18 49 608 | 542 9 15 | 66 | 244 | 4 10 259 | 220 11 5 | 39 | | 7 | 42.9 | 12 48 55.5 | 33.1 23 34 | 22.4 | 588 | 21 48 644 | 534 9 10 | 110 | 241 | 17 38 274 | 210 11 0 | 64 | | 8 | 42.1 | 14 40 53.4 | 32.7 2 55 | 20.7 | 573 | 17 41 630 | 529 9 57 | 101 | 239 | 17 44 282 | 212 3 11 | 70 | | 9 | 43.5 | 14 12 52.5 | 34.3 8 3 | 18.2 | 577 | 17 10 636 | 517 11 49 | 119 | 240 | 18 44 266 | 214 11 16 | 52 | | 10 | 42.4 | 13 57 51.9 | 33.5 6 54 | 18.4 | 586 | 19 33 624 | 536 10 20 | 88 | 240 | 20 40 259 | 219 11 35 | 40 | | 11
12 *
13
14 **
15 | 43.4
43.5
42.9
41.9 | 14 12 51.3
13 55 52.4
14 51 53.6
3 49 55.2
14 3 52.5 | 34.0 6 56
35.6 5 34
34.2 6 46
22.6 7 12
29.7 5 38 | 17.3
16.8
19.4
32.6
22.8 | 589
599
595
569
580 | 18 20 631
18 4 641
17 52 693
20 48 707
20 44 618 | 550 11 32
573 12 21
556 13 38
481 9 38
521 10 54 | 81
68
137
226
97 | 238
239
236
225
241 | 18 20 255
19 13 255
17 53 274
17 34 290
18 19 261 | 211 11 24
219 12 59
207 11 51
142 4 0
218 11 25 | 44
36
67
148
43 | | 16 * | 43.6 | 13 22 54.8 | 34.1 7 44 | 20.7 | 593 | 23 7 630 | 553 11 8 | 77 | 236 | 18 35 252 | 210 12 2 | 42 | | 17 ** | 46.3 | 15 33 59.7 | 34.9 7 35 | 24.8 | 596 | 17 56 693 | 537 11 29 | 156 | 242 | 18 44 304 | 209 5 53 | 95 | | 18 | 44.9 | 13 5 55.0 | 37.0 22 28 | 18.0 | 595 | 19 22 635 | 557 10 6 | 78 | 245 | 18 44 270 | 217 11 50 | 53 | | 19 | 43.6 | 14 7 56.3 | 32.9 7 43 | 23.4 | 595 | 15 49 635 | 543 9 40 | 92 | 245 | 18 10 272 | 223 10 55 | 49 | | 20 | 44.3 | 14 34 53.6 | 35.2 8 12 | 18.4 | 596 | 18 45 636 | 544 9 36 | 92 | 248 | 18 45 272 | 223 11 50 | 49 | | 21 | 43.9 | 13 2 54.3 | 33.6 8 57 | 20.7 | 600 | 20 6 633 | 543 9 15 | 90 | 243 | 6 40 263 | 200 11 8 | 63 | | 22 | 43.6 | 13 41 55.1 | 32.2 7 36 | 22.9 | 608 | 17 41 673 | 558 10 24 | 115 | 241 | 17 42 273 | 206 11 25 | 67 | | 23 | 45.1 | 14 52 55.1 | 37.9 7 0 | 17.2 | 604 | 15 37 647 | 563 9 6 | 84 | 244 | 17 31 275 | 215 10 30 | 60 | | 24 | 43.8 | 14 58 49.2 | 36.5 7 53 | 12.7 | 601 | 17 42 636 | 564 10 10 | 72 | 247 | 19 1 267 | 222 11 4 | 45 |
 25 ** | 44.3 | 13 19 51.1 | 38.1 4 36 | 13.0 | 589 | 0 52 635 | 528 14 5 | 107 | 246 | 17 38 274 | 219 4 33 | 55 | | 26 | 44.1 | 13 53 52.1 | 38.1 8 16 | 14.0 | 588 | 19 14 629 | 543 11 44 | 86 | 251 | 17 38 284 | 227 11 18 | 57 | | 27 * | 42.4 | 14 4 51.2 | 34.1 5 57 | 17.1 | 594 | 19 35 626 | 559 12 55 | 67 | 248 | 18 39 262 | 231 12 59 | 31 | | 28 | 43.8 | 13 16 52.0 | 36.4 7 20 | 15.6 | 599 | 18 2 636 | 554 10 9 | 82 | 242 | 18 38 267 | 211 12 5 | 56 | | 29 * | 43.3 | 14 1 52.1 | 34.5 8 18 | 17.6 | 599 | 19 52 631 | 565 10 3 | 66 | 240 | 5 54 258 | 214 11 42 | 44 | | 30 | 44.6 | 13 30 51.1 | 38.7 8 18 | 12.4 | 596 | 19 58 625 | 562 9 32 | 63 | 243 | 17 33 267 | 222 11 48 | 45 | | Mean | 43.7 | - 53.6 | 33.7 - | 19.9 | 591 | - 643 | 544 - | 99.5 | 241 | - 268 | 212 - | 56.3 | | Mean * | 43.3 | - 53.0 | 34.3 - | 18.8 | 593 | - 628 | 559 - | 69.4 | 242 | - 258 | 217 - | 40.6 | | Mean ** | 44.1 | - 55.0 | 30.6 - | 24.4 | 587 | - 683 | 513 - | 170.2 | 237 | - 281 | 194 - | 87.4 | ^{*} International Quiet Day. ** International Disturbed Day. | | Т | ABLE IV DA | AILY MEAN AND | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY TH | E MAGNETOGRA | PHS | | |-----------------------------|--------------------------------------|---|---|--------------------------------------|---------------------------------|--|---|-----------------------------|--|--|---|----------------------------| | | \ | DECLINA | TION WEST | | | HORIZONTAI | INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | | July | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.Τ. 18000
h m γ ⁺ | 18000 U.T. | Υ | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T. | Υ | | 1
2
3 *
4 *
5 * | 43.9
43.2
42.7
43.0
43.1 | 13 48 53.3
13 20 52.1
13 43 50.3
14 3 53.5
14 50 52.0 | 34.9 7 21
33.6 6 54
33.4 5 25
33.7 6 50
32.7 6 56 | 18.4
18.5
16.9
19.8
19.3 | 600
599
594
598
604 | 17 11 658
16 5 658
17 46 625
15 20 620
20 26 626 | 554 12 40
559 11 15
559 10 26
563 10 56
569 10 14 | 104
99
66
57
57 | 243
238
239
235
235
233 | 18 37 264
18 37 265
18 19 253
5 41 253
18 37 251 | 220 11 5
204 11 26
222 12 24
203 11 47
203 12 5 | 44
61
31
50
48 | | 6 | 44.1 | 13 28 54.7 | 35.0 7 10 | 19.7 | 598 | 18 31 642 | 550 11 25 | 92 | 233 | 17 10 251 | 198 11 18 | 53 | | 7 | 43.0 | 13 51 56.3 | 33.6 5 24 | 22.7 | 603 | 18 57 653 | 565 11 35 | 88 | 231 | 18 26 253 | 209 11 30 | 44 | | 8 | 43.1 | 14 1 54.7 | 35.5 5 34 | 19.2 | 603 | 17 52 658 | 549 12 2 | 109 | 236 | 18 53 257 | 217 11 40 | 40 | | 9 | 42.9 | 14 55 53.8 | 32.7 6 40 | 21.1 | 600 | 18 46 646 | 560 11 33 | 86 | 229 | 20 39 249 | 193 11 25 | 56 | | 10 | 42.7 | 14 1 50.7 | 35.5 6 10 | 15.2 | 599 | 0 10 641 | 557 11 21 | 84 | 231 | 16 45 257 | 210 10 48 | 47 | | 11
12
13
14 * | 42.4
43.5
42.6
43.4
43.1 | 15 12 53.5
13 43 52.5
14 0 53.7
13 51 51.9
13 22 52.1 | 34.0 7 55
34.2 6 13
33.4 6 7
34.3 7 45
35.7 8 0 | 19.5
18.3
20.3
17.6
16.4 | 601
594
592
598
595 | 19 6 645
18 3 631
17 54 633
19 11 639
16 55 638 | 556 11 48
546 10 38
539 11 10
569 7 20
557 11 13 | 89
85
94
70
81 | 229
232
234
233
233 | 19 8 251
18 38 256
17 47 267
18 37 256
18 19 252 | 198 12 0
208 11 57
201 11 10
202 12 0
201 12 10 | 53
48
66
54
51 | | 16 | 43.0 | 13 11 52.8 | 34.5 7 2 | 18.3 | 598 | 1 30 627 | 566 9 56 | 61 | 232 | 17 24 252 | 197 11 33 | 55 | | 17 ** | 44.6 | 18 57 60.4 | 33.5 7 47 | 26.9 | 621 | 18 11 992 | 519 22 56 | 473 | 242 | 20 49 328 | 197 13 5 | 131 | | 18 ** | 40.5 | 14 18 57.3 | 20.2 6 40 | 37.1 | 580 | 18 32 667 | 482 15 11 | 185 | 265 | 18 28 341 | 206 11 13 | 135 | | 19 ** | 41.9 | 13 21 50.1 | 32.8 5 6 | 17.3 | 564 | 18 31 628 | 470 10 32 | 158 | 250 | 18 28 290 | 210 2 50 | 80 | | 20 ** | 42.4 | 13 20 50.4 | 32.8 5 52 | 17.6 | 568 | 15 40 619 | 495 11 21 | 124 | 252 | 16 49 292 | 220 11 9 | 72 | | 21 | 43.6 | 14 58 51.9 | 34.0 7 2 | 17.9 | 587 | 18 53 640 | 536 10 54 | 104 | 242 | 18 54 263 | 214 12 5 | 49 | | 22 | 43.1 | 14 21 54.1 | 35.6 7 39 | 18.5 | 592 | 19 0 637 | 550 9 11 | 87 | 243 | 18 48 271 | 209 11 36 | 62 | | 23 ** | 42.6 | 13 30 51.8 | 33.4 8 30 | 18.4 | 584 | 20 55 638 | 526 10 2 | 112 | 243 | 18 35 263 | 217 12 57 | 46 | | 24 | 42.7 | 13 50 49.5 | 33.9 5 58 | 15.6 | 590 | 16 14 640 | 536 10 42 | 104 | 246 | 16 21 267 | 226 13 8 | 41 | | 25 | 42.8 | 13 35 53.5 | 34.4 7 22 | 19.1 | 590 | 19 13 635 | 538 14 26 | 97 | 239 | 17 37 272 | 198 12 30 | 74 | | 26 | 43.6 | 14 46 52.4 | 37.4 7 50 | 15.0 | 591 | 22 28 619 | 548 13 30 | 71 | 241 | 17 13 275 | 206 12 9 | 69 | | 27 | 44.4 | 14 3 51.7 | 36.6 9 14 | 15.1 | 590 | 18 24 627 | 545 11 20 | 82 | 242 | 18 30 266 | 216 11 20 | 50 | | 28 | 42.0 | 14 33 49.6 | 34.3 7 46 | 15.3 | 593 | 18 6 622 | 549 10 56 | 73 | 242 | 18 20 260 | 220 11 33 | 40 | | 29 | 43.1 | 14 54 52.1 | 36.0 8 21 | 16.1 | 584 | 14 56 617 | 526 10 38 | 91 | 238 | 18 34 262 | 215 11 17 | 47 | | 30 * | 43.3 | 13 28 52.0 | 36.8 7 17 | 15.2 | 598 | 16 24 623 | 569 11 48 | 54 | 239 | 6 1 250 | 218 12 35 | 32 | | 31 | 42.7 | 13 44 54.6 | 35.0 7 15 | 19.6 | 600 | 16 32 634 | 562 13 15 | 72 | 237 | 17 51 260 | 203 13 5 | 57 | | Mean | 43.0 | - 52.9 | 33.9 - | 18.9 | 594 | - 648 | 544 - | 103.5 | 239 | - 266 | 208 - | 57.6 | | Mean * | 43.1 | - 51.9 | 34.2 - | 17.8 | 598 | - 627 | 566 - | 60.8 | 236 | - 253 | 210 - | 43.0 | | Mean ** | 42.4 | - 54.0 | 30.5 - | 23.5 | 583 | - 709 | 498 - | 210.4 | 250 | - 303 | 210 - | 92.8 | | August | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h m γ + | 18000 U.T. | Υ | 43000
Y + | U.T. 43000
h m γ + | 43000 U.T. | Υ | | 1 | 42.3 | 15 19 59.9 | 27.7 6 15 | 32.2 | 592 | 18 7 636 | 527 9 50 | 109 | 234 | 20 22 255 | 208 12 50 | 47 | | 2 | 42.8 | 14 21 56.0 | 31.3 6 58 | 24.7 | 593 | 17 29 632 | 550 10 55 | 82 | 233 | 17 31 254 | 193 12 5 | 61 | | 3 | 42.5 | 13 50 54.9 | 33.2 7 1 | 21.7 | 585 | 19 28 630 | 530 11 27 | 100 | 234 | 18 39 254 | 198 11 29 | 56 | | 4 | 42.8 | 13 21 55.3 | 34.4 8 3 | 20.9 | 589 | 21 47 617 | 540 10 30 | 77 | 233 | 16 25 250 | 205 12 15 | 45 | | 5 * | 43.4 | 13 0 53.7 | 35.0 6 40 | 18.7 | 594 | 17 54 619 | 560 12 18 | 59 | 233 | 18 27 246 | 211 11 57 | 35 | | 6 | 42.7 | 13 12 56. 2 | 32.4 6 42 | 23.8 | 597 | 17 50 635 | 532 11 2 | 103 | 233 | 17 53 253 | 206 11 5 | 47 | | 7 | 43.3 | 13 50 55. 1 | 32.6 7 40 | 22.5 | 594 | 19 23 629 | 547 10 20 | 82 | 226 | 18 37 245 | 189 12 56 | 56 | | 8 * | 43.1 | 13 26 54. 5 | 35.0 5 48 | 19.5 | 590 | 1 36 623 | 549 10 38 | 74 | 233 | 15 39 253 | 201 11 56 | 52 | | 9 * | 42.6 | 14 16 51. 7 | 34.2 8 45 | 17.5 | 595 | 21 8 629 | 547 10 58 | 82 | 228 | 20 59 243 | 183 12 6 | 60 | | 10 * | 43.3 | 14 20 54. 5 | 33.5 8 19 | 21.0 | 592 | 21 8 628 | 531 11 25 | 97 | 228 | 18 51 245 | 192 11 26 | 53 | | 11 | 43.0 | 13 55 57.0 | 31.7 8 12 | 25.3 | 594 | 18 11 622 | 544 11 51 | 78 | 233 | 18 15 259 | 203 11 25 | 56 | | 12 | 42.2 | 14 35 53.3 | 32.1 9 10 | 21.2 | 577 | 1 21 644 | 513 9 7 | 131 | 227 | 17 6 253 | 197 9 8 | 56 | | 13 | 43.3 | 16 35 54.1 | 34.6 5 34 | 19.5 | 585 | 16 53 669 | 544 10 16 | 125 | 243 | 18 39 276 | 210 12 35 | 66 | | 14 | 42.4 | 14 5 50.0 | 35.1 0 2 | 14.9 | 584 | 2 30 627 | 552 10 20 | 75 | 243 | 17 40 273 | 218 12 48 | 55 | | 15 ** | 45.0 | 16 8 60.3 | 27.8 22 45 | 32.5 | 594 | 16 12 711 | 474 24 0 | 237 | 231 | 21 35 257 | 184 22 29 | 73 | | 16 ** | 39.6 | 0 15 60.1 | 20. 1 0 39 | 40.0 | 527 | 23 16 605 | 398 0 29 | 207 | 270 | 16 43 347 | 50 0 22 | 297 | | 17 | 42.1 | 14 18 52.4 | 25. 8 21 31 | 26.6 | 552 | 18 23 641 | 480 15 52 | 161 | 259 | 18 3 334 | 224 3 35 | 110 | | 18 ** | 42.2 | 14 50 53.9 | 31. 0 8 32 | 22.9 | 548 | 18 22 622 | 460 9 20 | 162 | 254 | 18 23 323 | 192 2 0 | 131 | | 19 | 43.1 | 15 48 53.6 | 30. 5 22 54 | 23.1 | 559 | 23 2 621 | 478 12 59 | 143 | 260 | 16 21 318 | 221 0 0 | 97 | | 20 | 42.1 | 14 10 53.0 | 31. 8 2 10 | 21.2 | 560 | 16 12 615 | 505 11 27 | 110 | 255 | 16 25 308 | 199 1 48 | 109 | | 21 | 42.2 | 14 24 50.9 | 28. 0 20 36 | 22.9 | 566 | 21 22 626 | 487 {10 26 | 139 | 251 | 18 14 300 | 213 3 22 | 87 | | 22 ** | 41.6 | 9 11 57.6 | 3. 3 10 32 | 54.3 | 534 | 9 11 651 | 238 10 41 | 413 | 260 | 16 44 317 | 174 10 32 | 143 | | 23 ** | 41.0 | 14 12 53.9 | 28. 0 2 45 | 25.9 | 552 | 0 12 701 | 473 11 9 | 228 | 248 | 18 1 310 | 193 2 7 | 117 | | 24 | 42.0 | 13 49 51.8 | 35. 1 18 55 | 16.7 | 563 | 19 6 613 | 521 9 33 | 92 | 256 | 19 7 285 | 236 4 52 | 49 | | 25 | 42.4 | 13 48 54.1 | 35. 3 7 26 | 18.8 | 568 | 22 1 617 | 498 9 37 | 119 | 250 | 17 26 288 | 222 3 32 | 66 | | 26 | 41.9 | 13 18 49.3 | 35.5 8 0 | 13.8 | 572 | 23 48 630 | 520 11 44 | 110 | 251 | 18 25 271 | 221 12 5 | 50 | | 27 | 41.3 | 12 59 49.0 | 33.2 3 45 | 15.8 | 580 | 0 21 619 | 539 7 47 | 80 | 244 | 17 18 258 | 224 3 18 | 34 | | 28 | 42.4 | 14 22 52.9 | 34.9 8 9 | 18.0 | 591 | 20 55 626 | 567 10 22 | 59 | 245 | 22 5 263 | 213 12 19 | 50 | | 29 | 42.2 | 12 24 54.3 | 31.4 3 36 | 22.9 | 584 | 2 31 621 | 538 9 2 | 83 | 243 | 15 44 273 | 216 10 58 | 57 | | 30 * | 41.5 | 12 45 51.5 | 32.5 7 1 | 19.0 | 582 | 3 30 611 | 540 10 28 | 71 | 245 | 16 34 258 | 223 11 53 | 35 | | 31 | 42.3 | 13 3 53.5 | 32.3 7 38 | 21.2 | 590 | 17 37 638 | 560 8 58 | 78 | 245 | 19 37 266 | 212 12 31 | 54 | | Mean | 42.4 | - 54.1 | 30.9 - | 23.2 | 577 | - 633 |
511 - | 121.5 | 243 | - 275 | 201 - | 74.3 | | Mean * | 42.8 | - 53.2 | 34.0 - | 19.1 | 591 | - 622 | 545 - | 76.6 | 233 | - 249 | 202 - | 47.0 | | Mean ** | 41.9 | - 57.2 | 22.0 - | 35.1 | 551 | - 658 | 409 - | 249.4 | 253 | - 311 | 159 - | 152.2 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | | | | | | | | | | |----------------------------|--------------------------------------|--|---|--------------------------------------|---------------------------------|---|--|-------------------------------|---------------------------------|---|--|------------------------------| | ····· | | | ILY MEAN AND | EXTREME | VALUES | | | RECORDE | D BY TH | IE MAGNETOGRA | PHS | | | | | DECLINA' | TION WEST | | <u> </u> | HORIZONTAI | INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Rang | | September | 9°+ | U.T. 9°+
h m ' | 9°+ U.T. | , | 18000
Y | U.T. 18000
h m γ + | 18000 U.T. | Y | 43000
Y | U.T. 43000
h m Y + | 43000 U.T.
Y + h ■ | Y | | 1 * | 42.2 | 13 10 54.7 | 33.7 7 46 | 21.0 | 589 | 19 4 630 | 544 8 54 | 86 | 240 | 0 3 254 | 209 11 2 | 45 | | 2 | 41.7 | 13 1 52.3 | 32.6 7 43 | 19.7 | 591 | 23 29 650 | 535 8 58 | 115 | 238 | 23 30 255 | 210 11 32 | 45 | | 3 ** | 39.8 | 13 25 59.3 | 12.8 8 0 | 46.5 | 558 | 7 58 636 | 419 9 15 | 217 | 257 | 19 8 347 | 181 8 30 | 166 | | 4 | 41.4 | 14 8 54.0 | 33.5 5 16 | 20.5 | 554 | 16 51 629 | 491 9 6 | 138 | 251 | 19 35 277 | 212 0 6 | 65 | | 5 | 42.3 | 12 40 54.7 | 33.6 7 19 | 21.1 | 567 | 21 49 634 | 499 10 22 | 135 | 251 | 18 6 287 | 223 10 23 | 64 | | 6 | 41.5 | 12 45 54.4 | 31.3 6 52 | 23.1 | 577 | 16 30 631 | 537 10 18 | 94 | 259 | 19 27 312 | 221 11 59 | 91 | | 7 | 41.0 | 14 53 57.2 | 26.8 19 5 | 30.4 | 560 | 16 14 654 | 502 10 56 | 152 | 251 | 19 10 310 | 224 11 48 | 86 | | 8 | 40.5 | 13 52 50.7 | 28.1 7 5 | 22.6 | 570 | 1 20 595 | 537 11 53 | 58 | 249 | 7 15 273 | 225 0 36 | 48 | | 9 * | 41.3 | 14 2 50.1 | 34.2 8 47 | 15.9 | 577 | 19 10 606 | 542 11 25 | 64 | 248 | 7 24 259 | 229 12 50 | 30 | | 10 * | 41.4 | 14 24 50.1 | 33.7 8 17 | 16.4 | 580 | 21 25 613 | 540 10 28 | 73 | 245 | 6 43 256 | 229 13 4 | 27 | | 11 | 41.9 | 12 55 53.4 | 32.4 19 46 | 21.0 | 585 | 16 35 645 | 536 13 15 | 109 | 251 | 17 20 287 | 222 11 56 | 65 | | 12 | 40.8 | 12 7 49.8 | 32.6 8 23 | 17.2 | 581 | 6 18 618 | 542 24 0 | 76 | 252 | 21 35 274 | 227 11 10 | 47 | | 13 | 40.7 | 13 10 54.8 | 17.3 22 6 | 37.5 | 541 | 3 34 606 | 463 11 13 | 143 | 253 | 16 33 295 | 212 6 16 | 83 | | 14 ** | 41.1 | 12 52 52.9 | 24.8 17 10 | 28.1 | 545 | 5 16 608 | 447 11 3 | 161 | 260 | 17 11 344 | 223 5 30 | 121 | | 15 ** | 41.4 | 15 1 61.5 | 25.6 20 28 | 35.9 | 542 | 20 29 617 | 482 11 14 | 135 | 258 | 15 54 323 | 222 2 8 | 101 | | 16
17
18
19
20 | 40.7
40.5
40.5
41.8
40.8 | 12 42 48.5
13 24 52.0
13 34 49.8
14 9 49.5 | 31.4 21 9
27.5 22 29
26.9 17 41
32.9 20 27
31.1 22 58 | 17.1
24.5
24.1
16.9
18.4 | 564
557
561
566
570 | 21 20 608
2 50 636
17 50 640
20 2 620
16 52 610 | 526 7 44
496 11 20
493 13 20
512 11 32
522 11 27 | 82
140
147
108
88 | 255
255
250
256
257 | 19 20 275
18 15 322
17 45 303
17 18 285
16 48 294 | 227 23 57
200 3 0
212 23 11
226 24 0
225 0 15 | 48
122
91
59
69 | | 21 | 41.7 | 14 10 49.8 | 34.1 18 26 | 15.7 | 572 | 22 57 618 | 523 14 26 | 95 | 258 | 17 50 294 | 231 5 55 | 63 | | 22 | 41.4 | 13 49 52.2 | 28.5 19 53 | 23.7 | 563 | 5 31 608 | 499 10 1 | 109 | 260 | 16 54 303 | 242 11 51 | 61 | | 23 | 43.2 | 5 22 54.6 | 34.0 0 0 | 20.6 | 568 | 5 31 637 | 469 12 32 | 168 | 249 | 16 28 263 | 219 0 39 | 44 | | 24 ** | 40.8 | 15 38 79.0 | 12.4 18 30 | 66.6 | 546 | 15 32 714 | 415 23 27 | 299 | 283 | 16 19 486 | 144 23 49 | 342 | | 25 ** | 37.8 | 12 34 54.5 | 12.1 1 50 | 42.4 | 510 | 17 6 599 | 406 7 33 | 193 | 259 | 17 5 356 | 147 0 45 | 209 | | 26 | 40.4 | 13 20 50.7 | 33.6 { 7 43 | 17.1 | 555 | 19 49 585 | 512 10 15 | 73 | 263 | 7 23 277 | 240 2 38 | 37 | | 27 | 40.0 | 13 29 51.6 | 28.2 2 34 | 23.4 | 569 | 13 27 600 | 535 10 40 | 65 | 257 | 7 14 270 | 234 11 54 | 36 | | 28 * | 40.8 | 12 8 52.6 | 32.7 8 42 | 19.9 | 572 | 21 31 606 | 526 10 29 | 80 | 254 | 0 43 266 | 231 11 34 | 35 | | 29 * | 39.7 | 14 52 47.8 | 31.3 8 10 | 16.5 | 571 | 23 29 593 | 538 11 17 | 55 | 253 | 17 20 274 | 227 12 1 | 47 | | 30 | 40.4 | 19 45 48.4 | 31.7 8 54 | 16.7 | 574 | 18 10 632 | 532 11 46 | 100 | 252 | 18 10 268 | 234 11 49 | 34 | | Mean | 41.0 | - 53.4 | 28.7 - | 24.7 | 564 | - 623 | 504 - | 118.6 | 254 | - 296 | 217 - | 79.4 | | Mean * | 41.1 | - 51.1 | 33.1 - | 17.9 | 578 | - 610 | 538 - | 71.6 | 248 | - 262 | 225 - | 36.8 | | Mean ** | 40.2 | - 61.5 | 21.9 - | 39.5 | 540 | - 642 | 446 - | 196.0 | 263 | - 353 | 198 - | 154.8 | | October | 9 0+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h m Y + | 18000 U.T. | Υ | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T.
γ + h m | Υ | | 1
2 **
3
4
5 | 39.5
38.4
38.1
40.2
41.0 | 19 39 51.8
12 12 55.5
13 22 53.2
13 24 50.4
14 39 50.4 | 25.8 3 19
18.4 22 33
18.9 0 41
31.1 8 51
32.7 8 26 | 26.0
37.1
34.3
19.3
17.7 | 570
534
541
560
574 | 19 18 650
15 5 626
21 34 612
18 2 591
23 56 604 | 505 11 40
474 23 54
463 11 11
509 19 19
524 11 2 | 145
152
149
82
80 | 248
271
253
259
255 | 21 32
22 7 287
15 42 354
13 10 283
7 13 276
7 18 271 | 220 11 20
219 23 49
174 0 30
232 12 27
234 12 22 | 67
135
109
44
37 | | 6 | 40.8 | 13 3 52.0 | 30.7 8 48 | 21.3 | 576 | 20 0 611 | 519 11 1 | 92 | 253 | 7 13 269 | 225 12 34 | 44 | | 7 | 41.0 | 17 32 49.8 | 29.7 21 21 | 20.1 | 576 | 17 32 625 | 525 10 58 | 100 | 256 | 20 58 282 | 228 12 20 | 54 | | 8 | 41.0 | 14 9 51.3 | 34.9 9 1 | 16.4 | 576 | 5 11 613 | 537 11 16 | 76 | 254 | 17 44 270 | 235 12 16 | 35 | | 9 ** | 41.5 | 13 21 56.7 | 24.6 21 10 | 32.1 | 551 | 1 16 615 | 466 13 43 | 149 | 268 | 17 59 356 | 224 2 30 | 132 | | 10 ** | 40.3 | 14 35 54.5 | 22.5 20 32 | 32.0 | 532 | 4 30 583 | 459 13 26 | 124 | 267 | 16 51 334 | 214 1 45 | 120 | | 11 | 39.2 | 14 27 52.2 | 26.8 21 32 | 25.4 | 541 | 20 34 581 | 504 11 30 | 77 | 265 | 16 7 328 | 222 3 14 | 106 | | 12 ** | 40.1 | 6 59 53.6 | 20.3 18 48 | 33.3 | 547 | 2 18 615 | 496 10 40 | 119 | 263 | 16 37 304 | 222 2 15 | 82 | | 13 | 39.7 | 5 1 48.0 | 20.7 21 35 | 27.3 | 562 | 21 41 617 | 523 18 16 | 94 | 261 | 17 44 304 | 236 5 34 | 68 | | 14 | 40.1 | 6 11 55.5 | 24.8 20 15 | 30.7 | 548 | 18 59 611 | 471 10 16 | 140 | 262 | 14 20 292 | 235 0 34 | 57 | | 15 ** | 41.1 | 12 47 50.4 | 30.3 22 6 | 20.1 | 559 | 22 36 686 | 470 12 18 | 216 | 266 | 16 46 306 | 219 23 30 | 87 | | 16 | 40.6 | 13 22 50.1 | 32.3 1 15 | 17. 8 | 562 | 4 56 596 | 492 11 20 | 104 | 262 | 15 40 306 | 232 0 3 | 74 | | 17 | 41.0 | 12 22 50.5 | 32.6 18 14 | 17. 9 | 565 | 0 24 596 | 523 10 46 | 73 | 259 | 15 43 292 | 238 10 42 | 54 | | 18 | 40.7 | 13 44 51.5 | 31.0 22 53 | 20. 5 | 568 | 21 50 600 | 533 11 22 | 67 | 259 | 15 48 283 | 238 12 14 | 45 | | 19 | 41.8 | 12 43 52.2 | 22.4 19 42 | 29. 8 | 562 | 19 49 647 | 512 10 3 | 135 | 264 | 19 20 314 | 239 10 3 | 75 | | 20 | 40.7 | 12 48 50.4 | 27.4 21 0 | 23. 0 | 566 | 23 0 621 | 524 10 28 | 97 | 261 | 15 37 291 | 227 23 40 | 64 | | 21 | 39.7 | 12 58 47.7 | 29.8 0 55 | 17.9 | 567 | 23 2 607 | 531 12 20 | 76 | 255 | 18 15 274 | 233 0 16 | 41 | | 22 | 41.2 | 13 18 49.8 | 34.8 8 39 | 15.0 | 578 | 1 46 606 | 541 12 28 | 65 | 252 | 19 35 262 | 240 12 30 | 22 | | 23 | 40.7 | 13 20 48.8 | 33.6 19 44 | 15.2 | 569 | 6 26 605 | 521 11 32 | 84 | 258 | 19 33 284 | 235 10 55 | 49 | | 24 | 40.6 | 12 20 49.4 | 31.6 1 15 | 17.8 | 576 | 1 15 622 | 542 9 53 | 80 | 252 | 23 13 266 | 229 10 52 | 37 | | 25 | 40.3 | 13 15 48.6 | 33.7 8 50 | 14.9 | 580 | 0 34 602 | 545 11 28 | 57 | 252 | 8 19 262 | 238 11 32 | 24 | | 26 * | 40.9 | 13 20 46.4 | 36.0 8 56 | 10.4 | 583 | 19 51 604 | 542 10 21 | 62 | 249 | 7 21 255 | 238 12 5 | 17 | | 27 * | 41.1 | 12 35 47.7 | 34.3 8 52 | 13.4 | 589 | 23 9 606 | 551 10 44 | 55 | 247 | 7 34 259 | 233 11 46 | 26 | | 28 * | 40.9 | 12 31 45.8 | 34.9 8 16 | 10.9 | 590 | 22 1 613 | 516 9 56 | 97 | 245 | 5 10 253 | 234 11 23 | 19 | | 29 * | 41.3 | 12 58 47.5 | 34.1 9 17 | 13.4 | 594 | 6 8 609 | 566 10 12 | 43 | 242 | 19 35 251 | 223 11 56 | 28 | | 30 * | 41.1 | 14 50 45.9 | 35.4 8 50 | 10.5 | 595 | 22 1 613 | 572 10 30 | 41 | 242 | 16 26 255 | 220 11 19 | 35 | | 31 | 41.3 | 12 39 49.8 | 35.0 8 3 | 14.8 | 594 | 16 52 613 | 574 9 1 | 39 | 244 | 22 10 255 | 228 12 4 | 27 | | Mean * Mean ** | 40.5 | - 50.6 | 29.4 - | 21.2 | 567 | - 613 | 517 - | 95.8 | 256 | - 286 | 228 - | 58.5 | | | 41.1 | - 46.7 | 34.9 - | 11.7 | 590 | - 609 | 549 - | 59.6 | 245 | - 255 | 230 - | 25.0 | | | 40.3 | - 54.1 | 23.2 - | 30.9 | 545 | - 625 | 473 - | 152.0 | 267 | - 331 | 220 - | 111.2 | ^{*} International Quiet Day. ** International Disturbed Day. | | 7 | TABLE IV DA | ILY MEAN AND | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY TH | HE MAGNETOGRA | APHS | | |----------------------------------|--------------------------------------|--|---|--------------------------------------|---------------------------------|--
---|----------------------------|--|---|--|----------------------------| | | | DECLINAT | TION WEST | | | HORIZONTAL | INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | | November | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h m Y + | 18000 U.T. | Υ | 43000
Y ⁺ | U.T. 43000
h m Y + | 43000 U.T.
γ + h m | Υ | | 1 | 40.6 | 13 4 48.8 | 34.8 22 0 | 14.0 | 589 | 20 16 611 | 556 11 55 | 55 | 245 | 22 11 258 | 231 11 52 | 27 | | 2 | 40.5 | 13 5 46.7 | 34.8 8 14 | 11.9 | 586 | 4 11 614 | 547 10 27 | 67 | 244 | 16 13 256 | 229 11 25 | 27 | | 3 * | 40.6 | 15 25 45.6 | 35.8 23 36 | 9.8 | 591 | 23 20 619 | 557 11 10 | 62 | 245 | 20 30 256 | 229 12 5 | 27 | | 4 | 41.0 | 12 35 48.6 | 35.2 0 53 | 13.4 | 583 | 0 3 617 | 545 11 18 | 72 | 248 | 15 46 270 | 231 0 52 | 39 | | 5 * | 40.9 | 12 17 46.3 | 36.9 8 30 | 9.4 | 588 | 19 36 606 | 552 10 47 | 54 | 248 | 14 44 260 | 240 9 44 | 20 | | 6 * | 40.6 | 13 1 44.6 | 37.1 8 43 | 7.5 | 593 | 18 10 612 | 571 10 40 | 41 | 244 | 8 44 255 | 232 11 17 | 23 | | 7 * | 40.9 | 13 0 45.2 | 35.2 23 34 | 10.0 | 597 | 23 2 626 | 588 13 44 | 38 | 243 | 23 0 253 | 234 13 2 | 19 | | 8 ** | 40.2 | 13 27 51.5 | 30.8 21 33 | 20.7 | 574 | 0 0 609 | 527 15 30 | 82 | 252 | 19 35 278 | 239 1 16 | 39 | | 9 ** | 39.9 | 13 21 54.3 | 17.3 21 2 | 37.0 | 548 | 1 2 614 | 449 23 6 | 165 | 259 | 20 40 304 | 190 23 7 | 114 | | 10 ** | 38.0 | 20 57 47.0 | 21.5 0 52 | 25.5 | 537 | 20 42 656 | 475 0 41 | 181 | 263 | 14 28 305 | 219 1 26 | 86 | | 11 ** | 39.8 | 14 11 59.1 | 27. 5 17 41 | 31.6 | 551 | 0 49 605 | 461 14 21 | 144 | 267 | 16 46 335 | 209 1 19 | 126 | | 12 | 39.4 | 12 54 46.2 | 31. 5 3 6 | 14.7 | 560 | 22 35 601 | 530 13 51 | 71 | 260 | 14 45 283 | 230 3 3 | 53 | | 13 | 39.6 | 13 31 45.1 | 34. 5 18 45 | 10.6 | 567 | 18 49 606 | 511 11 20 | 95 | 259 | 16 28 280 | 247 2 14 | 33 | | 14 | 40.3 | 13 56 48.4 | 34. 9 21 53 | 13.5 | 568 | 6 30 593 | 528 13 16 | 65 | 261 | 17 36 281 | 247 10 10 | 34 | | 15 | 40.1 | 13 10 48.0 | 31. 8 23 24 | 16.2 | 577 | 2 50 629 | 546 10 3 | 83 | 253 | 16 20 267 | 240 9 41 | 27 | | 16 | 40.7 | 13 29 46.8 | 34. 2 23 50 | 12.6 | 574 | 22 53 629 | 537 10 12 | 92 | 254 | 16 37 269 | 241 9 50 | 28 | | 17 | 40.6 | 14 34 45.8 | 34. 9 0 0 | 10.9 | 580 | 28 36 596 | 546 10 50 | 50 | 254 | 16 20 264 | 244 9 45 | 20 | | 18 | 40.5 | 15 59 47.1 | 35. 1 22 40 | 12.0 | 582 | 3 27 599 | 559 15 1 | 40 | 254 | 18 30 270 | 235 11 7 | 35 | | 19 ** | 40.4 | 13 20 48.8 | 35. 1 22 24 | 13.7 | 562 | 5 10 614 | 522 12 19 | 92 | 261 | 20 12 288 | 235 6 33 | 53 | | 20 | 39.7 | 14 1 45.9 | 32. 4 21 45 | 13.5 | 570 | 21 50 601 | 528 11 13 | 73 | 258 | 18 46 269 | 246 10 50 | 23 | | 21 | 40.7 | 18 16 47.2 | 35.0 9 34 | 12.2 | 578 | 5 46 595 | 549 18 29 | 46 | 259 | 20 38 279 | 240 11 32 | 39 | | 22 | 40.3 | 13 30 46.0 | 37.0 9 55 | 9.0 | 578 | 21 40 593 | 556 14 48 | 37 | 258 | 17 27 266 | 244 10 52 | 22 | | 23 | 40.9 | 12 27 46.5 | 36.8 22 50 | 9.7 | 584 | 22 56 621 | 565 11 21 | 56 | 251 | 0 5 265 | 238 10 44 | 27 | | 24 | 39.2 | 18 45 47.0 | 23.4 19 54 | 23.6 | 584 | 17 58 639 | 540 20 41 | 99 | 253 | 22 15 276 | 236 10 59 | 40 | | 25 | 39.7 | 13 20 43.8 | 33.0 0 9 | 10.8 | 582 | 20 6 605 | 562 10 12 | 43 | 252 | 0 20 268 | 240 11 23 | 28 | | 26 * | 39.8 | 13 30 44.2 | 35.3 23 40 | 8.9 | 587 | 17 55 611 | 572 12 21 | 39 | 252 | 16 28 261 | 242 12 4 | 19 | | 27 | 39.9 | 13 5 45.5 | 34.2 8 46 | 11.3 | 593 | 18 39 628 | 567 11 30 | 61 | 249 | 0 36 260 | 235 11 58 | 25 | | 28 | 40.7 | 12 59 46.2 | 37.2 9 52 | 9.0 | 598 | 6 14 613 | 581 11 54 | 32 | 247 | 2 52 256 | 231 11 5 | 25 | | 29 | 40.0 | 14 15 47.3 | 34.3 22 38 | 13.0 | 593 | 6 20 621 | 572 21 3 | 49 | 247 | 20 20 263 | 231 12 31 | 32 | | 30 | 39.7 | 14 3 45.2 | 33.7 19 7 | 11.5 | 587 | 17 39 606 | 567 21 26 | 39 | 249 | 20 45 264 | 234 12 32 | 30 | | Mean | 40.2 | - 47.3 | 33.0 - | 14.3 | 578 | - 613 | 542 - | 70.8 | 253 | - 272 | 234 - | 38.0 | | Mean * | 40.6 | - 45.2 | 36.1 - | 9.1 | 591 | - 615 | 568 - | 46.8 | 246 | - 257 | 235 - | 21.6 | | Mean ** | 39.7 | - 52.1 | 26.4 - | 25.7 | 554 | - 620 | 487 - | 132.8 | 260 | - 302 | 218 - | 83.6 | | December | 9°+ | U.T. 9°+ | 9°+ U.T. | • | 18000
Y | U.T. 18000
h m γ + | 18000 U.T. | Y | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T. | Y | | 1 | 40.0 | 15 23 44.2 | 35. 4 8 55 | 8.8 | 592 | 1 5 614 | 552 9 39 | 62 | 247 | 16 49 256 | 233 13 20 | 23 | | 2 | 40.5 | 12 32 47.8 | 36.0 22 18 | 11.8 | 586 | 19 55 603 | 554 16 32 | 49 | 249 | 17 11 268 | 234 12 10 | 34 | | 3 * | 39.9 | 13 24 43.7 | 37. 4 8 35 | 6.3 | 592 | 18 50 603 | 579 10 31 | 24 | 247 | 19 27 255 | 236 13 5 | 19 | | 4 | 39.9 | 16 41 45.6 | 34.5 21 10 | 11.1 | 594 | 8 9 628 | 557 17 0 | 71 | 245 | 16 45 261 | 228 12 54 | 33 | | 5 | 40.3 | 13 48 46.2 | 31.6 23 31 | 14.6 | 592 | 4 20 629 | 563 23 28 | 66 | 243 | 17 34 258 | 225 4 41 | 33 | | 6 ** | 38.6 | 12 51 49.2 | 22. 2 1 25 | 27.0 | 566 | 21 49 613 | 514 18 53 | 99 | 254 | 19 49 290 | 220 1 15 | 70 | | 7 | 40.3 | 17 46 45.6 | 33. 0 16 43 | 12.6 | 573 | 22 10 593 | 544 19 46 | 49 | 253 | 20 18 273 | 237 11 21 | 36 | | 8 | 40.0 | 6 18 46.0 | 36. 9 9 0 | 9.1 | 585 | 6 30 615 | 563 12 32 | 52 | 252 | 16 36 261 | 239 6 55 | 22 | | 9 ** | 39.6 | 13 40 47.8 | 31. 8 20 29 | 16.0 | 580 | 8 2 620 | 525 13 53 | 95 | 252 | 19 48 281 | 233 8 11 | 48 | | 10 | 39.6 | 13 5 45.5 | 32. 4 22 33 | 13.1 | 580 | 21 14 605 | 546 10 42 | 59 | 251 | 16 47 267 | 240 3 20 | 27 | | 11
12 **
13 **
14
15 | 39.8
40.0
39.9
40.1
39.5 | 13 4 45.6
12 30 48.2
13 1 45.9
12 15 47.3
15 37 44.2 | 32.1 20 27
32.9 23 25
33.0 20 40
35.8 23 53
33.6 0 15 | 13.5
15.3
12.9
11.5
10.6 | 578
575
576
572
581 | 5 45 614
4 30 607
2 44 623
5 20 606
1 11 606 | 545 18 10
508 16 45
536 13 24
534 11 30
550 14 46 | 69
99
87
72
56 | 253
252
252
252
253
251 | 19 28 274
17 19 282
17 29 276
16 44 275
16 15 268 | 239 6 2
229 9 34
237 4 7
242 7 43
239 1 23 | 35
53
39
33
29 | | 16 | 39.9 | 14 3 43.7 | 37. 2 9 42 | 6.5 | 589 | 4 33 611 | 563 11 13 | 48 | 250 | 16 38 261 | 241 12 52 | 20 | | 17 * | 40.0 | 12 59 44.6 | 35. 2 23 58 | 9.4 | 591 | 6 5 606 | 574 16 21 | 32 | 248 | 16 45 259 | 237 12 4 | 22 | | 18 | 39.8 | 12 2 44.1 | 32. 4 23 50 | 11.7 | 593 | 23 21 611 | 574 20 16 | 37 | 246 | 20 44 261 | 231 12 3 | 30 | | 19 | 40.6 | 13 48 45.6 | 33. 3 0 0 | 12.3 | 586 | 5 33 614 | 567 15 40 | 47 | 248 | 19 11 267 | 233 10 57 | 34 | | 20 * | 40.3 | 13 32 45.6 | 37. 5 22 34 | 8.1 | 588 | 6 7 604 | 569 16 13 | 35 | 249 | 20 38 260 | 232 10 58 | 28 | | 21 * | 39.7 | 14 33 43.3 | 37.5 8 57 | 5.8 | 595 | 19 5 608 | 581 10 26 | 27 | 244 | 18 35 252 | 230 10 23 | 22 | | 22 | 40.4 | 16 10 45.7 | 31.1 23 29 | 14.6 | 595 | 6 1 613 | 554 19 36 | 59 | 246 | 20 20 266 | 229 10 54 | 37 | | 23 ** | 39.8 | 14 7 50.2 | 32.9 1 23 | 17.3 | 591 | 14 5 614 | 560 1 22 | 54 | 247 | 18 24 259 | 227 13 25 | 32 | | 24 | 39.4 | 16 32 42.8 | 32.0 21 44 | 10.8 | 592 | 21 49 642 | 579 22 40 | 63 | 249 | 21 44 259 | 241 13 2 | 18 | | 25 | 39.9 | 13 28 44.1 | 37.5 22 50 | 6.6 | 597 | 20 55 610 | 583 1 4 | 27 | 245 | 22 57 255 | 235 12 20 | 20 | | 26 | 40.0 | 13 58 45.6 | 34.2 24 0 | 11.4 | 598 | 5 56 619 | 580 15 21 | 39 | 245 | 18 50 256 | 238 6 25 | 18 | | 27 | 39.2 | 12 22 44.2 | 31.5 23 44 | 12.7 | 590 | 5 45 621 | 567 23 29 | 54 | 246 | 22 38 259 | 235 9 10 | 24 | | 28 | 39.4 | 14 8 44.6 | 29.9 22 51 | 14.7 | 592 | 22 57 618 | 570 23 28 | 48 | 246 | 0 23 259 | 229 9 23 | 30 | | 29 | 39.7 | 14 59 46.9 | 31.8 21 10 | 15.1 | 588 | 21 49 632 | 532 15 16 | 100 | 248 | 16 28 265 | 234 8 52 | 31 | | 30 | 40.0 | 13 16 44.3 | 37.4 0 0 | 6.9 | 594 | 14 44 615 | 578 10 30 | 37 | 243 | 19 36 254 | 233 11 5 | 21 | | 31 * | 40.0 | 12 32 43.0 | 37.9 0 25 | 5.1 | 599 | 14 22 609 | 587 19 27 | 22 | 242 | 17 29 252 | 232 11 4 | 20 | | Mean | 39.9 | - 45.5 | 33.8 - | 11.7 | 587 | - 614 | 558 - | 56.1 | 248 | - 264 | 234 - | 30. 4 | | Mean * | 40.0 | - 44.0 | 37.1 - | 6.9 | 593 | - 606 | 578 - | 28.0 | 246 | - 256 | 233 - | 22. 2 | | Mean ** | 39.6 | - 48.3 | 30.6 - | 17.7 | 578 | - 615 | 529 - | 86.8 | 251 | - 278 | 229 - | 48. 4 | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | T | 'ABLE IV | (A) | THREE- | HOUR-RA | NGE IN | DICES ' | K' FOR | THE YE | AR 1947 | • | | | | | |----------|--------------|--------------|----------|--------------|-----------------|----------|--------------|---------|----------|----------|--------------|-------------|---------|--------------|----------|---------|-----------------------------|-------------| | Date | į | January | | F | ebruar y | , | | March | | | April | | | May | | | June | | | Date | Indi | ices | Sum | Ind | ices | Sum | 1 | 1113 | 3301 | 13 | 3231 | 3122 | 17 | 2122 | 1112 | 12 | 1233 | 3311 | 17 | 3432 | 4332 | 24 | 5543 | 3231 | 26 | | 2 | 0121 | 2532 | 16 | 0112 | 2221 | 11 | 2366 | 6556 | 39 | 1133 | 3411 | 17 | 1211 | 2111 | 10 | 0212 | 2321 | 13 | | 3 | 0223 | 3445 | 23 | 1124 | 2331 | 17 | 6454 | 5578 | 44 | 3333 | 3443 | 26 | 1313 | 3230 | 16 | 2423 | 2321 | 19 | | 4 | 2204 | 3443 | 22 | 3333 | 3223 | 22 | 6665 | 4353 | 38 | 3344 | 4344 | 29 | 1332 | 1231 | 16 | 1233 | 2331 | 18 | | 5 | 3323 | 4553 | 28 | 2012 | 2211 | 11 | 3233 | 3221 | 19 | 3233 | 3232 | 21 | 2322 | 2331 | 18 | 1364 | 4555 | 33 | 6 | 4332 | 3343 | 25 | 1233 | 2223 | 18 | 2123 | 2311 | 15 | 4444 | 3331 | 26 | 1123 | 3332 | 18 | 5122 | 1132 | 17 | | 7 | 2232 | 2213 | 17 | 1033 | 3232 | 17 | 0234 | 4443 | 24 | 1233
 3413 | 20 | 3212 | 2211 | 14 | 2334 | 3335 | 26 | | 8 | 2223 | 1111 | 13 | 2234 | 4455 | 29 | 2344 | 7567 | 38 | 1133 | 3315 | 20 | 0111 | 2210 | 8 | 4432 | 3433 | 26 | | 9 | 1111 | 1210 | 8 | 4323 | 2354 | 26 | 6453 | 4343 | 32 | 4344 | 4333 | 28 | 0212 | 1100 | 7 | 3433 | 3423 | 25 | | 10 | 1000 | 0110 | 3 | 3234 | 4311 | 21 | 2232 | 3221 | 17 | 2233 | 3313 | 20 | 1123 | 1211 | 12 | 3323 | 3332 | 22 | | <u> </u> | 11 | 0012 | 1000 | 4 | 1122 | 3223 | 16 | 1133 | 3101 | 13 | 3233 | 4313 | 22 | 1122 | 3332 | 17 | 2232 | 3331 | 19 | | 12 | 0001 | | 4 | 1132 | | 14 | 2334 | | 25 | 1223 | 3334 | 21 | 4223 | 3223 | 21 | 2231 | 3333 | 20 | | 13 | 0011 | | 7 | 1123 | 2121 | 13 | 2234 | | 26 | 3323 | 3233 | 22 | 3333 | 3444 | 27 | 3233 | 3545 | 28 | | 14 | 1112 | | 11 | 0022 | 3221 | 12 | 3333 | 4533 | 27 | 2323 | 3243 | 22 | 4433 | 4343 | 28 | 5654 | 4563 | 38 | | 15 | 1112 | | 13 | 1033 | 3111 | 13 | 3355 | 5633 | 33 | 4323 | 4323 | 24 | 3334 | 4444 | 29 | 4433 | 3322 | 24 | ,, | 2/22 | 2554 | 2.1 | 2245 | 1511 | 20 | 1121 | 2454 | 20 | 3222 | 2333 | 20 | 5444 | 4434 | 32 | 2113 | 3333 | 19 | | 16 | 2633 | | 31 | 2245 | 4544
3421 | 30
27 | 1121
5432 | | 26 | 4322 | 6677 | 37 | 1 | 4333 | 25 | 2444 | 5653 | 33 | | 17
18 | 4234 | 3234
2333 | 25
18 | 5543
3213 | 2233 | 19 | 3212 | | 22 | | 5546 | 37 | 3323 | 3553 | 27 | 2333 | 3333 | 23 | | 19 | 2122
3123 | | 17 | 2133 | | 27 | 3222 | | 20 | | 3414 | 26 | | 3422 | 22 | 1 | 3423 | 24 | | 20 | 2211 | | 14 | 4312 | | 14 | 3332 | | 20 | ŀ | 4442 | 29 | | 3222 | 17 | 1 | 2331 | 18 | | 1 20 | 2211 | 1292 | - 1 | .,,,, | | | ,,,,, | 2221 | | | | 21 | 3211 | | 14 | 0023 | | 11 | | 3313 | 18 | 1331 | | 11 | 1 | 3222 | 20 | l | 2333
3443 | 22
25 | | 22 | 1021 | | 16 | 0022 | | 11 | ŀ | 3341 | 24 | 1122 | | 8 | l | 2325
4431 | 18 | | 4431 | 22 | | 23 | 2112 | | 15 | 0022 | | 7 | | 4533 | 28
29 | l | 1211
3200 | 12 | | 4431 | 34 | İ | 3433 | 22 | | 24 | 0153 | | 21 | | 3232 | 19 | 5553 | 3234 | 22 | i | 3542 | 21 | | 4323 | 22 | | 5423 | 28 | | 25 | 4554 | 46)) | 38 | 1124 | 3224 | 19 | 2233 | 3234 | 22 | 1129 | 3742 | | 7177 | 4929 | |] ,,,, | <i>y</i> 12 <i>y</i> | 26 | 3443 | 3442 | 27 | 4423 | | 21 | | 4334 | 28 | l | 3433 | 22 | l | 4534 | 30 | 1 | 3433 | 25 | | 27 | 3233 | | 25 | 2312 | | 12 | 3343 | | 28 | ŀ | 4431 | 24 | | 3532 | 26 | ł | 3221 | 15 | | 28 | 4221 | | 19 | 1122 | 3213 | 15 | 1 | 5555 | 38 | | 3332 | 21 | l | 4543 | 24 | l | 3332 | 20 | | 29 | 1323 | | 18 | | | | | 3243 | 20 | l | 4211 | 16 | ì | 4532 | 25 | | 1222 | 15 | | 30 | 2112 | 2114 | 14 | | | | 5433 | 4443 | 30 | 2323 | 3332 | 21 | 2322 | 1311 | 15 | 3 2 3 3 | 3332 | 22 | 31 | 2122 | 1013 | 12 | | | | 2343 | 3411 | 21 | | | | 1233 | 3444 | 24 | | | | | | | | | | | | | | | | | | [| | | | | | | ш | | | | L | | <u> </u> | L | | | <u> </u> | | | 1 | | <u> </u> | 1 | | | | | | | | T | ABLE IV | (A) | THREE~ | HOUR-RA | NGE IN | DICES ' | K' FOR | THE YE | AR 1947 | 7 | | | | | |------|------|------|-----|------|---------|-----|--------|----------|----------|---------|---------|--------|---------|----------|-----|------|--------------|-----| | Date | | July | - | | August | | S | eptembe: | r | | October | | N | lovember | | Γ | ecember | | | Date | Ind | ices | Sum | 1 | 3222 | 3433 | 22 | 3344 | 2432 | 25 | 3323 | 2232 | 20 | 4554 | 4255 | 34 | 2213 | 3123 | 17 | 3124 | 1110 | 13 | | 2 | 3333 | 4533 | 27 | 1243 | 3433 | 23 | 2134 | 3224 | 21 | 3443 | 5565 | 35 | 3322 | 2111 | 15 | 1012 | 2331 | 13 | | 3 | 1331 | 2322 | 17 | 2223 | 2333 | 20 | 4476 | 5655 | -42 | 6533 | 4224 | 29 | 1112 | 1223 | 13 | 1122 | 1101 | 9 | | 4 | 1313 | 3210 | 14 | 2323 | 3322 | 20 | 4434 | 5543 | 32 | 2233 | 4321 | 20 | 3113 | 2322 | 17 | 1132 | 3323 | 18 | | 5 | 1213 | 2212 | 14 | 1223 | 3321 | 17 | 3233 | 3344 | 25 | 1132 | 3213 | 16 | 1111 | 2211 | 10 | 4422 | 3123 | 21 | | | | : | | | | | | | | | | | | | | | | | | 6 | 2132 | 3432 | 20 | 2234 | 3333 | 23 | 4233 | 3443 | 26 | 2233 | 3323 | 21 | 1012 | 1211 | 9 | 4433 | 4344 | 29 | | 7 | 2312 | | 20 | 2322 | 3331 | 19 | 4343 | 5565 | 35 | 1133 | 2454 | 23 | 0112 | 2213 | 12 | 3132 | 2441 | 20 | | 8 | 2234 | | 26 | 3222 | 2210 | 14 | 4343 | 3310 | 21 | 1333 | 3433 | 23 | 2233 | 3333 | 22 | 1232 | 2111 | 13 | | 9 | 2233 | | 22 | 1233 | 1213 | 16 | 3111 | 2221 | 13 | 4434 | 5545 | 34 | 4334 | 6466 | 36 | 2333 | 4353 | 26 | | 10 | 4222 | 3433 | 23 | 2133 | 3313 | 19 | 1111 | 1210 | 8 | 4454 | 5555 | 37 | 5334 | 3455 | 32 | 3223 | 2223 | 19 | 2221 | (222 | ٠, | 2222 | (212 | 22 | 0122 | 25 (2 | 21 | 5442 | 1551 | 24 | £222 | 5554 | 22 | 2222 | 2242 | 24 | | 11 | 3224 | | 24 | 2333 | | 22 | _ | 3543 | 21 | | 4554 | 34 | ļ | 5554 | 33 | 3333 | 2343 | 24 | | 12 | 3332 | | 22 | 4435 | 3434 | 30 | 2243 | 3243 | 23 | | 3454 | 34 | 3432 | 3323 | 23 | 3323 | 4533 | 26 | | 13 | 3222 | | 21 | 3333 | 3644 | 29 | 4443 | 3445 | 31 | | 1455 | 29 | { | 1232 | 20 | 4333 | 3333 | 25 | | 14 | 1221 | 2332 | 16 | 4223 | 3333 | 23 | 4445 | 4545 | 35 | | 4455 | 36 | l | 3333 | 19 | 2233 | 3322
3333 | 20 | | 15 | 3322 | 2331 | 19 | 0225 | 5656 | 31 | 4454 | 5555 | 37 | 3444 | 5436 | 33 | 4333 | 3223 | 23 | 4112 | 3333 | 20 | | - | 16 | 4121 | 1211 | 13 | 6335 | 3444 | 32 | 3331 | 3345 | 25 | 3334 | 3421 | 23 | 3333 | 3224 | 23 | 1212 | 1100 | 8 | | 17 | 1123 | 2786 | 30 | 4444 | 4555 | 35 | 5544 | 4555 | 37 | 3233 | 3342 | 23 | 2222 | 2211 | 14 | 1101 | 1102 | 7 | | 18 | 5455 | 6665 | 42 | 5555 | 5444 | 37 | 5433 | 4555 | 34 | 1243 | 2434 | 23 | 3221 | 3223 | 18 | 2111 | 1133 | 13 | | 19 | 4334 | 4442 | 28 | 3344 | 5644 | 33 | 3343 | 3444 | 28 | 3243 | 3464 | 29 | 2332 | 3334 | 23 | 3212 | 1122 | 14 | | 20 | 3444 | 4533 | 30 | 5343 | 4543 | 31 | 4333 | 3414 | 25 | 3332 | 3345 | 26 | 2123 | 2223 | 17 | 0111 | 1111 | 7 | 21 | 3333 | 4337 | 24 | 5434 | 3544 | 32 | 3333 | 3434 | 26 | 4232 | 2443 | 24 | 1113 | 2432 | 17 | 1011 | 1100 | 5 | | 22 | 2233 | | 24 | | 5543 | 35 | | 4544 | 29 | 3332 | | 18 | i | 2121 | 8 | | 2244 | 13 | | 23 | 3343 | | 27 | 6434 | | 34 | | 5323 | 30 | | 3342 | 24 | 1 | 2223 | 16 | l | 4322 | 20 | | 24 | 2433 | | 25 | 4334 | | 29 | | 5765 | 37 | | 2313 | 20 | ĺ | 0454 | 16 | İ | 1114 | 10 | | 25 | 3233 | | 26 | | 4433 | 28 | | 5554 | 41 | | 2121 | 13 | | 1211 | 15 | 1011 | 1123 | 10 | | | | | | | ÷ ** | 2255 | | | 26 | 3433 | | 27 | 2233 | | 21 | 3333 | | 23 | 0122 | | 10 | l | 2223 | 14 | } | 2223 | 18 | | 27 | 2344 | | 25 | 3343 | | 19 | 4323 | | 23 | 0022 | | 8 | | 2232 | 16 | | 1224 | 20 | | 28 | 2132 | | 18 | 1122 | | 18 | | 3323 | 20 | | 2211 | 11 | | 2211 | 12 | | 2214 | 15 | | 29 | 2323 | | 19 | | 3422 | 25 | | 2213 | 16 | 0022 | | 111 | | 3233 | 20 | 1 | 3434 | 19 | | 30 | 1212 | 1212 | 12 | 2332 | 2221 | 17 | 3222 | 3243 | 21 | 1111 | 2312 | 12 | 0112 | 1243 | 14 | 1111 | 2211 | 10 | 31 | 1112 | 3333 | 17 | 1133 | 3433 | 21 | | | | 1232 | 3323 | 19 | | | | 1011 | 1120 | 7 | l | | | <u> </u> | | | L | <u></u> | | ` | L | | L | Summer ``` TABLE V. - MEAN DIURNAL INEQUALITIES OF THE MAGNETIC ELEMENTS DECLINATION. INCLINATION AND HORIZONTAL INTENSITY All Days DECLINATION WEST (Unit 0.01) Month and Universal Time. Hour commencing Season. 1947 1 3 5 6 10 11 12 15 8 9 13 14 16 17 18 19 20 23 +295 + 353 +287 January -166 -173 -124 -083 - 091 -070 -059 -095 -152 -134 -028 +124 + 257 + 193 +215 -018 - 105 -140 - 203 - 205 February -181 -228 - 202 -140 -118 -135 -131 -195 -325 - 361 - 162 +139 +418 + 556 +570 +443 + 299 +181 +148 +070 -047 -166 - 217 209 - 321 March - 120 -124 -280 -458 - 304 +746 +135 -035 -076 -135 -198 -218 - 248 -230 -085 +340 +680 +777 +590 +350 253 April - 220 -349 -650 -143 - 186 ~ 201 189 -190 -187 - 194 -519 - 506 +298 +710 +873 +799 +612 +362 +171 +056 -057 -091 +016 214 - 121 May -113 -110 -220 -355 - 516 -648 -707 +077 -629 309 +466 +745 +838 +743 +514 + 285 +084 -022 +002 +004 +023 -008 -014 June -116 -150 -410 - 558 -669 -374 +392 + 263 - 208 -247 -725 -640 +650 +787 +775 +044 -007 +641 +431 +104 +055 +055 -006 -094 - 157 - 197 -201 -318 - 552 -451 -159 -638 -671 -635 -137 + 285 +795 +072 +623 +786 +670 +450 +243 +097 +088 +056 +002 -053 August - 216 - 321 -440 +411 +180 +036 -074 +018 -001 -071 - 187 -318 -317 - 548 -593 -540 - 370 -052 +755 +806 +856 +659 + 393 -149 September ~318 ~343 - 328 - 267 -237 -185 -330 -517 -497 -288 +122 + 509 +861 +784 +604 +127 +863 +318 +029 -070 -178 -167 -275 -223 -319 -299 - 265 October | -066 -069 - 264 +761 -242 -139 -409 -330 +036 +387 + 305 +202 +037 -007 -157 - 258 +679 +675 + 393 - 324 -337 -147 -118 - 203 -248 November ~229 - 194 -118 -101 -110 -095 -195 -012 + 227 + 394 +494 +406 +343 + 219 +132 +101 +004 -082 -201 -261 December -127 -062 -064 -038 -212 -060 -022 -077 -087 +019 +158 + 301 +364 +331 ± 288 +182 +144 +079 -025 -130 -249 -294 Year -206 -217 -214 -193 -210 -251 -307 -394 -434 -310 -031 +311 +593 +696 +647 +501 +316 +173 +063 +005 -064 -115 -168 -191 Winter -202 -194 -150 -101 -094 -094 -077 -112 -187 -196 -046 +162 +352 +442 +399 +333 +223 +168 +112 +008 -091 -180 -233 -239 Equinox -272 -296 -284 -232 -186 -141 -218 -395 -504 -357 -018 +384 +733 +818 +751 +550 +334 +159 +022 -034 -132 -179 -251 -257 Summer -144 -161 -208 -246 -351 -517 -626 -674 -611 -376 -030 +389 +693 +829 +790 +621 +390 +193 +054 +041 +032 +013 -022 -078 INCLINATION (Unit 0.01) January -068 -086 -062 -030 +025 +079 -012 -020 -025 -052 -068 +090 +064 +043 +046 +030 +020 +007 +008 +017 +005 +001 000 -010 -070 +028
+136 Februar₃ -053 -078 -098 -040 -042 -047 -101 -112 +093 +135 +110 +082 +068 +056 +026 +011 -007 -014 -019 -033 - 032 March -081 -100 -100 -130 -165 +034 +138 +123 +120 -014 -028 -129 -131 -057 +109 +130 +092 +084 +067 +049 +017 -001 +008 -044 April - 023 -044 -068 -057 -043 -030 -031 -034 -047 -065 -070 -017 +048 +127 + 180 +173 +113 +082 +050 -016 -039 -060 -069 -059 Мау +056 -076 -042 -033 -036 -030 -014 +027 +081 +130 +106 +088 + 086 +079 -001 -042 -077 -088 -043 +124 -084 -084 -067 -061 June -053 -055 -033 +028 +012 -077 -066 -055 -059 +081 +183 +159 +129 +112 +093 -011 -095 -114 -121 +151 +064 -117 -091 -072 July -037 -042 -032 -041 -053 -033 +023 +083 +123 +166 +178 +155 +113 +064 +032 -032 -058 -077 -137 -119 -106 -081 - 060 036 August -113 -073 -097 -101 -100 -086 -086 -052 -009 +052 +126 +202 + 217 +165 +108 +083 +054 +045 +023 -004 -063 -091 -104 -088 -125 +069 September + 171 +210 +195 +143 +018 -100 -141 -125 +045 +111 +111 +049 -005 -037 -054 -060 -040 -090 -115 -116 -044 -063 - 107 -111 -128 -138 +140 -049 -073 October -082 -100 -099 -045 +048 +135 +176 +184 + 160 +094 +067 +026 +015 +009 -019 -015 -083 -058 November -076 -037 -037 -053 -064 -069 -079 -015 +024 +063 +089 +096 +083 +091 +082 +052 +031 -005 -007 -010 -022 -029 -048 -066 +001 -015 -028 -041 -069 -056 +035 +048 +040 -013 -007 December -075 -023 +018 +039 +036 +060 +071 +079 +041 +015 -013 -079 Year -055 -056 -062 -071 -079 -079 -052 -005 +053 +106 +135 +131 +108 +087 +066 +038 +017 -009 -032 -043 -046 -049 -052 -050 Winter -023 -030 -040 -057 -070 -081 -088 -072 -035 +014 +063 +088 +084 +068 +070 +063 +052 +028 +014 +011 -001 -013 -019 -024 Equinox -080 -083 -089 -100 -111 -123 -086 -019 +060 +136 +176 +171 +135 +113 +076 +046 +022 +005 -018 -036 -032 -037 -061 -066 Summer -062 -057 -056 -056 -033 +017 +074 +133 +169 +165 +134 +105 +080 +052 +006 -022 -059 -093 -104 -104 -098 -077 -061 HORIZONTAL INTENSITY (Unit 0.17) January + 20 + 70 + 88 + 111 + 74 + 30 - 56 -142 -163 -124 - 73 - 59 27 + 11 15 + 04 21 + 18 34 84 - 59 + 75 + 93 + 58 - 177 -249 -194 -122 _ - 49 - 02 + 18 + 42 + 68 + 68 +105 -251 + 51 + February +142 +157 +140 80 61 54 -111 + 100 +135 - 199 + 46 March 88 95 + 138 +193 +157 68 - 70 - 260 -253 -233 -197 54 11 + 36 + 71 80 46 60 57 April + 49 +102 +112 -224 -342 -354 - 261 -182 + 81 +118 +151 +157 +122 +100 +111 + 97 + 57 + 34 68 50 76 74 93 46 + 59 - 99 May + 71 + 55 + 69 + 55 + 42 - 25 -251 -250 -234 -185 +194 +122 -121 --215 - 236 +118 +188 +190 +174 +158 +103 27 - 44 - 95 + 92 + 76 + 70 + 47 - 177 + 73 +153 +115 June +230 + 244 + 220 +211 + 66 + 65 -139 - 253 -321 -313 - 289 -237 12 +196 - 23 -123 - 74 + 66 July + 47 - 328 +138 +108 + 40 + 60 + 83 + 66 - 203 - 291 -339 -262 -167 +189 +286 +242 +211 +155 + 64 - 76 August +101 +115 + 69 + 07 - 86 -396 -332 -244 -171 - 08 + 52 +105 +184 + 204 + 220 +189 +145 +112 +127 +122 +120 -214 -354 - 77 - 03 + 41 - 83 -193 - 298 + 85 +110 September +127 +107 +128 +138 +148 -375 -358 -263 -179 +129 +156 +155 +140 + 87 +102 +168 + 56 - 39 October | + + 49 + 57 + 98 +118 +122 +132 +164 +171 +124 - 81 -228 -313 -333 -283 - 220 -122 37 + 86 + 67 + 105 +132 + 96 - 89 + 35 + 62 + 77 + 87 + 99 + 72 + 09 - 62 -130 ~ 164 -167 -128 -111 - 38 - 09 + 42 + 41 + 46 + 52 + 53 + 67 November 43 +107 + 05 - 60 - 37 + 41 + 02 + 18 + 84 - 87 December + 34 + 48 +102 +104 + 88 + 65 86 79 72 90 26 Year + 72 + 68 + 75 + 87 + 102 + 106 + 68 - 02 - 95 - 194 - 258 - 263 - 220 - 162 - 94 - 20 + 34 + 81 + 115 + 119 + 111 + 103 + 92 + 76 Winter + 32 + 38 + 51 + 72 + 90 + 110 + 118 + 94 + 41 - 43 - 127 - 164 - 157 - 117 - 96 - 72 - 46 - 09 + 13 + 15 + 32 + 41 + 42 + 42 Equinox + 95 + 94 + 99 +116 +137 +154 +109 + 19 -105 -237 -323 -325 -260 -195 -101 - 13 + 54 + 83 +109 +120 + 94 + 88 +101 + 87 ``` + 89 + 73 + 74 + 74 + 81 + 56 - 21 -117 -221 -301 -325 -300 -244 -175 - 86 + 24 + 95 +170 +223 +221 +206 +178 +132 + 99 TABLE V. - MEAN DIURNAL INEQUALITIES OF GEOGRAPHICAL COMPONENTS OF MAGNETIC INTENSITY All Days ``` NORTH COMPONENT (Unit 0.1 y) Month and Universal Time. Hour commencing Season, 1947 19 0 2 6 7 10 11 12 13 14 15 16 17 18 20 21 22 23 + 82 + 43 January + 93 +115 - 43 -137 -172 -149 -104 - 84 - 50 ~ 27 + 04 + 42 + 35 + 44 -160 -119 +105 +114 +152 +156 - 260 -284 -242 -172 February +167 19 04 + 35 55 68 75 88 87 76 87 + 23 -169 - 107 +166 -249 - 281 -177 + 76 + 68 March +109 +128 +126 +154 +152 +201 -292 + 73 58 77 93 27 265 21 86 + 74 + 92 -175 -376 -165 +101 +144 +107 April + 68 + 142 -324 +153 + 126 +126 +115 + 85 +118 - 259 -322 10 47 67 81 14 -155 -205 - 259 + 78 + 87 + 34 -255 -289 -299 + 171 +154 May + 88 -165 +178 + 189 +121 +103 + 65 +191 80 78 55 20 90 + 18 + 83 + 97 - 191 - 282 - 308 - 246 -164 + 33 + 169 +236 +151 June +101 + 79 +106 + 97 -321 -293 +217 + 212 + 204 +122 71 47 + 78 + 35 -237 - 145 +148 July + 78 + 57 +111 - 142 -322 -349 -315 +164 +273 + 201 +106 + 68 + 61 +115 60 -246 04 95 +231 + 16 +143 -315 -386 - 309 -250 + 87 +193 +124 August. +142 +140 +147 +129 + 108 + 57 - 162 -365 -153 68 +178 +200 +217 +150 31 September +137 + 160 +187 +163 71 - 145 - 268 -381 -399 -338 -255 -147 58 55 +116 +151 +159 + 154 + 101 +126 +129 +154 + 156 35 -182 - 74 -341 -286 + 79 - 43 -195 + 09 + 30 + 53 October +126 +144 +144 +152 +174 +175 +129 -312 -364 + 85 + 80 +127 +160 +125 -127 - 61 +106 + 27 - 43 - 182 - 92 -119 - 58 - 21 + 32 + 76 November + 52 + 75 + 87 + 95 82 -201 -171 -146 + 40 + 70 + 89 + 63 +116 53 + 71 + 13 -104 - 50 -119 -116 -101 +106 +105 + 90 December + 45 + 53 Year + 89 + 87 + 93 + 104 + 120 + 128 + 95 + 34 - 54 - 163 - 252 - 288 - 271 - 223 - 152 - 65 + 05 + 64 + 107 + 117 + 115 + 112 + 106 + 92 Winter + 50 + 55 + 64 + 81 + 97 + 117 + 123 + 103 + 57 - 25 - 121 - 177 - 187 - 155 - 130 - 101 - 66 - 25 + 02 + 15 + 40 + 57 + 63 + 63 Equinox +119 +119 +123 +135 +151 +164 +127 + 55 - 57 -202 -317 -355 -323 -266 -168 - 62 + 23 + 68 +105 +121 +105 +103 +122 +109 Summer +100 + 86 + 91 + 96 +112 +102 + 36 - 54 -163 -262 -318 -331 -304 -248 -157 - 33 + 59 +150 +214 +215 +200 +175 +132 +104 WEST COMPONENT (Unit 0.1 y) January - 85 - 87 - 60 - 32 - 34 - 23 - 13 - 38 - 76 - 81 - 39 + 39 + 136 + 176 +143 +132 +101 +116 67 45 - 48 - 43 - - 40 - - 86 -110 - 95 - 59 - -164 -202 -116 + 32 +181 +264 + 223 +151 February +283 96 82 + 44 17 -104 -102 80 - 32 -138 -256 -195 - 89 +381 +379 - 107 -127 +139 +323 + 305 +188 March -154 -173 -100 78 07 27 -117 72 40 - 81 - 92 - 87 - 86 - 167 - 271 +111 -134 + 99 +410 + 207 April - 92 -359 -307 + 335 +435 + 334 55 35 10 32 98 + 16 - 01 + 10 - 47 + 206 + 76 May -107 -180 - 268 -350 -397 -371 -204 +358 +416 +379 +279 +172 20 35 30 39 - 56 + 23 -364 - 384 + 173 + 94 - 31 -100 -119 -207 +307 .Tune - 290 -410 -253 + 160 +307 +390 +344 + 242 70 66 59 - 17 July - 97 -378 -373 -289 -130 + 97 + 288 +396 +407 + 368 + 263 + 161 +100 88 + 74 56 + 19 76 - 156 - 283 -344 - 95 - 61 - 291 -324 - 94 - 15 + 163 + 218 06 August -152 -331 -257 +361 +449 +443 +350 +114 + 50 + 37 71 - - 165 +405 - 11 September - 148 -153 -119 - 98 - 74 -169 -290 - 297 - 204 + 02 + 211 +416 +429 + 321 + 184 + 89 42 74 -130 - 100 - 47 - 07 + 11 - 72 -120 -151 -164 -154 -140 -121 -107 - 16 -131 -232 -214 +150 +314 +369 +339 + 203 + 169 +116 + 29 October 33 - 68 - 50 - 62 - 25 - 41 - 15 - 51 - 06 - 34 -115 - 98 -102 + 93 +182 +242 +168 +110 + 69 + 61 + 09 - 98 -130 November 39 -119 28 +198 -121 - 30 - 46 + 71 +161 + 138 + 83 December 06 +146 +182 20 -98 -104 -102 -88 -95 -116 -152 -210 -247 -198 -60 +122 +279 +344 +329 +264 +174 +106 +53 +23 -15 -44 -74 Year -102 -97 -71 -42 -35 -32 -21 -44 -93 -112 -46 +59 +161 +216 +196 +165 +111 +88 +62 +07 -44 -89 -117 -121 Winter -129 \quad -142 \quad -135 \quad -105 \quad -76 \quad -50 \quad -98 \quad -208 \quad -286 \quad -230 \quad -64 \quad +150 \quad +347 \quad +404 \quad +383 \quad +291 \quad +187 \quad +99 \quad +30 \quad +02 \quad -54 \quad -80 \quad -117 \quad -122 \quad +387 +3 Equinox -62 - 74 - 99 - 119 - 174 - 266 - 337 - 379 - 363 - 251 - 70 + 157 + 329 + 413 + 407 + 335 + 224 + 131 + 66 + 59 + 52 + 37 + 11 - 25 VERTICAL COMPONENT (Unit 0.1 γ) 54 - 65 - 67 - 20 + 22 + 41 + 06 36 - 45 - + 48 + 64 + 68 66 + 46 + 35 January 40 - 31 - 41 40 50 05 16 - 29 - 28 - 22 - 25 - 15 - 42 - 90 -110 -110 - 68 - 00 + 50 + 79 + 88 + 80 + 73 60 + 44 February 05 70 22 - 90 - 85 -123 -138 + 33 March -113 -123 46 -113 - 43 + 62 + 167 + 256 + 253 + 224 +184 +136 89 45 -135 38 + 22 - 78 -168 -226 + 22 + 13 -214 -140 + 52 + 108 +137 +143 +126 + 80 78 29 April 08 41 + 15 50 -119 -214 - 278 - 246 + 60 +173 +173 +144 +114 77 52 26 May 25 + 33 01 -156 35 +127 15 - 91 _ -110 -176 - 02 - 07 -226 -164 + 70 + 192 +164 + 118 June 66 +135 +204 26 32 26 14 37 - 02 + + 26 + 41 + 42 - 16 - 18 -169 -225 +190 July + 03 01 44 -101 -218 -166 62 +122 + 174 +149 +125 78 23 12 38 - 65 - 62 - 22 -124 -170 - 199 -195 -111 August - 41 61 +137 + 201 +208 +159 79 30 20 13 11 67 91 - 78 - - -102 + 164 + 261 -145 - 157 -114 + 285 + 235 +174 +117 54 September 98 - 105 -109 96 37 65 32 58 -103 55 - 74 - 87 - 76 - 63 - 78 - 77 - 47 - 38 - 41 - 37 - 25 - 33 - 30 - 33 - 24 - 31 63 - 78 -105 _ - 62 -116 -135 + 21 - 32 +165 +134 +103 43 + 143 +177 + 161 October 22 27 24 - 55 - 33 - 34 - 64 - 82 - 70 - 76 - 54 - 65 _ - 73 - 62 + 24 + 77 + 93 + 87 + 78 + 73 + 73 45 09 32 November 10 59 - 24 + 34 + 78 + 81 + 72 December 43 62 42 00 ``` -23 -37 -40 -42 -35 -27 -23 -22 -40 -84 -132 -158 -139 -76 +10 +86 +140 +159 +154 +128 +100 +68 +33 +02 -05 - 17 - 18 - 29 - 35 - 26 - 33 - 31 - 29 - 55 - 76 - 78 - 74 - 35 + 20 + 51 + 74 + 75 - 76 + 74 + 72 + 51 + 34 + 13 -56 -69 -77 -77 -67 -70 -46 -19 -35 -82 -138 -164 -137 -61 +31 +132 +201 +210 +191 +155 +109 +76 +23 -26 - 08 - 26 - 27 - 19 - 05 + 16 + 10 - 16 - 55 -114 - 182 - 232 - 206 - 131 - 22 + 77 + 146 + 192 + 194 + 154 + 120 + 77 + 42 + 18 Year Winter Equinox Summer TABLE VI. - MEAN DIURNAL INEQUALITIES OF THE MAGNETIC ELEMENTS DECLINATION, INCLINATION AND HORIZONTAL INTENSITY International Quiet Days #### DECLINATION WEST (Unit 0.01) | Monta
and
Season,
| | | | | | | | Ũ | Iniver | sal T | ime. | Hour | commei | ncing | | | | | | | | | - | · | |-------------------------|--------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|----------------|--------------|-------|------|------|-------|------| | 1947 | 0 | , | 2 | , | | | , | _ | ^ | • | 10 | | | •• | • • | | | | • • | | | | | | | _ | U | ı | 2 | 3 | 4 |) | 6 | / | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | January | -089 | - 063 | -027 | -013 | -017 | -051 | -065 | -113 | -159 | -151 | -085 | +047 | + 205 | + 239 | +163 | +127 | + 137 | +123 | +089 | +015 | -045 | ~069 | - 101 | -091 | | February | -035 | -029 | +001 | -017 | -041 | -073 | - 139 | -231 | -419 | -523 | -339 | -025 | + 247 | +393 | +409 | + 297 | + 187 | +149 | +131 | +095 | +055 | -029 | -045 | -017 | | March
April | - 142 | -112 | -128 | -138 | -166 | -198 | -248 | - 402 | -552 | -500 | - 200 | + 274 | +618 | +758 | +664 | +452 | | +148 | +056 | +026 | -010 | -102 | - 208 | -170 | | May | -086 | -118 | -118 | -142 | -106 | - 238 | -404 | -592
-764 | -716
-710 | ~580 | - 206
206 | + 270 | +608 | | +712 | + 538 | , | + 162 | +060 | +034 | -002 | ~060 | -070 | -068 | | June | +052
+008 | +020 | -042
-086 | -150
-218 | -274
-414 | -488
-630 | -684
-710 | -764
-744 | -712
-712 | -448
-484 | -024
-088 | +392
+338 | +636
+670 | +746
+832 | +654
+804 | +452
+608 | | +072 | +016 | +054 | +078 | +072 | + 068 | +036 | | July | -062 | -088 | -158 | -236 | -350 | - 580 | -710 | -720 | -650 | ~404
~404 | -084 | +308 | +676 | +776 | +736 | +582 | ٠,٠ | + 148
+ 226 | +070
+124 | +044 | +040 | +042 | +072 | +092 | | August | -142 | -228 | -300 | - 242 | -406 | - 540 | - 590 | -672 | -682 | -494 | -144 | | + 774 | +918 | +874 | +692 | | +202 | + 108 | +096 | +064 | +030 | -024 | -108 | | September | -198 | - 266 | -300 | -314 | -302 | - 348 | -494 | -628 | -686 | ~488 | -072 | | +802 | +840 | +754 | -,- | + 352 | + 194 | + 148 | + 150 | +126 | +002 | -136 | -148 | | October | -087 | -123 | -115 | -135 | -173 | -205 | - 257 | -379 | -515 | -415 | -095 | +245 | +431 | +429 | +361 | + 235 | | +231 | +179 | +137 | +081 | +015 | -027 | -045 | | November | -091 | -115 | -081 | -091 | -083 | -123 | -145 | - 171 | -261 | -251 | -021 | + 183 | +319 | +313 | + 243 | + 189 | + 169 | +149 | +151 | +069 | +045 | -017 | -133 | -243 | | December | - 146 | -114 | -108 | -086 | -070 | -074 | - 098 | -078 | -108 | -124 | -050 | +086 | +198 | + 284 | +286 | +254 | +174 | +114 | +098 | +014 | -054 | -108 | -138 | -152 | | Year | -085 | - 105 | -122 | -149 | - 200 | -296 | - 379 | -458 | -514 | -405 | -117 | + 243 | +515 | +610 | +555 | +415 | +276 | +160 | +103 | +068 | +039 | -015 | -059 | -079 | | Winter | = 000 | -000 | -054 | -052 | -063 | -000 | -112 | | -227 | • | | | ,-, | | | _ | | | | | • • | | / / | | | | -090 | -080 | -054 | -052 | -053 | -080 | -112 | -148 | -237 | -262 | -124 | +073 | +242 | +307 | +275 | + 217 | + 167 | + 134 | +117 | +048 | +000 | -056 | - 104 | -126 | | Equinox | - 128 | -155 | -165 | -182 | -187 | -247 | -351 | - 500 | -617 | ~496 | -143 | +311 | +615 | +703 | +623 | +446 | + 297 | + 184 | +111 | +087 | +049 | -036 | -110 | -108 | | Summer | -036 | -081 | -147 | -212 | -361 | - 560 | -674 | -725 | -689 | -458 | -085 | +347 | +689 | +818 | +767 | + 584 | + 364 | + 162 | +080 | +068 | +067 | +048 | +037 | -002 | ## INCLINATION (Unit 0.01) January +011 +014 -001 -005 -022 -034 -053 -051 -034 +011 +055 +067 +039 +048 +042 +013 -003 -026 -027 -018 -020 -014 +008 +003 February -036 -029 -036 -045 -051 -060 -075 -050 +013 +071 +128 +175 +146 +082 +029 +018 +008 -003 -049 -051 -050 -052 -049 -028 March -034 -042 -018 -042 -047 -071 -066 -031 +050 +139 +170 +141 +110 +063 +041 +025 +022 +001 -036 -066 **-095** -090 -071 -054 April -022 -018 -007 000 -021 -034 -016 +022 +086 +141 +172 +157 +111 +074 +034 -026 -074 -077 -081 -081 -089 -**093** -083 -082 -002 -063 May -021 -003 000 +002 -011 +040 +092 +125 +124 +085 +063 +038 +030 +012 -027 -058 -061 -073 -076 -**090** -077 -051 June -026 -010 -015 +026 +066 +084 +112 +139 +131 +112 +087 +062 +037 -006 -026 -063 -114 -122 -103 -015 -030 -116 -106 - 097 -017 -015 -009 -018 -031 +004 +065 July +112 +136 +127 +128 -013 -081 -085 -065 -064 +096 +064 +027 -088 -085 -077 -058 -042 August -070 -082 -051 -071 -065 -035 +001 +049 +104 +168 +202 +165 +116 +083 +079 +039 -024 -054 -071 -088 -110 -121 -089 -068 September -030 -037 -034 -031 -012 +026 +069 +124 +144 +158 +138 +098 +017 +003 -046 -070 -102 -113 -094 -033 +049 -076 -067 -087 October -033 -025 -031 -033 -038 -051 -027 +004 +080 +152 +164 +123 +080 +049 +012 +014 -028 -037 -041 -051 -065 -071 -083 -063 November -036 -046 -008 -008 -013 -023 -020 -025 -028 -008 +033 +063 +078 +101 +080 +048 +038 +009 -014 -039 -057 -033 -032 -063 December +012 +012 +006 -011 -023 -029 -034 -027 -029 -011 +017 +024 +019 +007 +008 +033 +045 +017 -003 +004 -007 -004 -010 -015 Year -022 -022 -018 -024 -031 -027 -008 +022 +067 +106 +124 +114 +082 +052 +026 +001 -024 -040 -058 -065 -071 -069 -059 -056 Winter -005 -003 -011 -021 -029 -037 **-048** -034 **-**004 +034 +070 **+092** +071 +046 +039 +018 +009 -013 -029 -025 -031 -025 -022 -031 Equinox -030 -031 -023 -027 -035 -042 -021 +016 +085 +144 +166 +140 +100 +059 +026 +004 -032 -046 -065 -078 -086 -083 -076 -072 Summer -031 -033 -022 -024 -031 -002 +043 +084 +119 +140 +137 +109 +076 +051 +029 -019 -048 -061 -081 -094 -097 -098 -079 -065 ## HORIZONTAL INTENSITY (Unit 0.1 y) | January | - 11 | - 14 | : + | 11 | + 17 | + | 43 | + 65 | + 83 | + 75 | + 41 | - 31 | - 107 | -129 | - 93 | - 81 | - | 57 . | - 15 | + 11 | + 45 | + 51 | + 39 | + 41 | + 23 | - 05 | - 03 | |-----------|------|-------|--------------|----|------|-----|----|-------|-------|-------|-------|-------|-------|---------------|-------|-------|------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------| | 1 | | | • | 11 | 17 | | | | | | | | | | | - | | - | | | | | | • | | | | | February | + 66 | + 50 |) + | 66 | + 78 | + | 86 | + 104 | +124 | + 90 | + 02 | - 104 | -214 | -296 | - 258 | -156 | - | 60 . | - 26 | - 08 | + 10 | + 48 | + 76 | - | . • | + 84 | + 78 | | March | + 57 | + 63 | 3 + | 29 | + 67 | + | 77 | +113 | + 111 | + 75 | - 49 | - 205 | -293 | - 267 | - 223 | - 139 | - | 85 . | - 31 | - 05 | + 23 | + 77 | +115 | +153 | + 147 | +115 | + 85 | | April | + 60 | + 52 | ? + . | 38 | + 36 | + | 60 | + 76 | + 54 | - 08 | - 116 | - 226 | -314 | -3 2 0 | - 248 | - 170 | ~ | 80 | + 32 | +114 | + 132 | +142 | +138 | +148 | +150 | + 132 | +128 | | May | + 53 | + 31 | . + | 31 | + 37 | + | 65 | + 57 | - 15 | -111 | - 187 | -225 | -221 | -219 | - 171 | -125 | - | 55 ' | + 37 | + 107 | +127 | +145 | +141 | + 159 | +137 | +113 | + 91 | | June | + 38 | + 58 | 3 + | 50 | + 40 | + | 54 | + 02 | - 68 | -116 | -172 | -232 | - 254 | -258 | - 216 | -160 | - , | 84 · | + 04 | + 60 | + 128 | + 214 | +218 | + 180 | + 190 | + 166 | +150 | | July | + 40 | + 38 | } + | 28 | + 54 | + | 82 | + 34 | - 76 | - 166 | -224 | ~232 | - 256 | - 238 | - 186 | -110 | - | 16 | 116 | + 148 | + 140 | + 146 | +174 | + 164 | +138 | + 104 | + 74 | | August | +124 | +134 | + | 88 | +122 | + 1 | 24 | + 82 | + 26 | - 56 | - 162 | - 286 | -372 | -354 | - 278 | -192 | -1 | 38 - | - 36 | + 68 | +120 | + 140 | + 162 | +194 | + 204 | +152 | + 122 | | September | + 76 | + 78 | + | 68 | + 62 | + | 64 | + 28 | - 16 | - 82 | - 190 | - 248 | - 298 | - 286 | - 228 | -134 | - | 62 - | - 10 | + 86 | +136 | + 182 | +200 | +168 | +144 | +126 | + 144 | | October | + 66 | + 54 | + | 62 | + 64 | + | 74 | + 84 | + 48 | + 08 | -112 | -240 | -282 | - 240 | - 170 | - 94 | - | 22 - | - 14 | + 46 | + 56 | + 64 | + 98 | +106 | +116 | +132 | + 104 | | November | + 17 | + 13 | + | 23 | + 35 | + | 31 | + 43 | + 41 | + 15 | - 41 | -101 | -143 | -173 | -141 | - 87 | | 49 - | - 11 | + 23 | + 63 | + 87 | + 61 | + 79 | + 59 | + 61 | + 99 | | December | - 11 | - 11 | _ | 01 | + 23 | + | 41 | + 51 | + 53 | + 41 | + 33 | - 07 | - 59 | - 65 | - 59 | - 41 | - | 31 - | - 51 | - 51 | - 07 | + 27 | + 15 | + 31 | + 21 | + 25 | + 29 | | Year | + 48 | + 45 | + | 41 | + 53 | + | 66 | + 62 | + 30 | - 20 | - 98 | -178 | - 234 | - 237 | - 189 | -124 | - , | 62 - | - 00 | + 50 | + 81 | + 110 | +120 | +125 | +117 | + 100 | + 92 | | 1 | | • • • | | | ,,, | | | | | | | | | | | | | - | | , , | | | | _ | | | | | Winter | + 15 | + 09 | + | 25 | + 38 | + | 50 | + 66 | + 75 | + 55 | + 09 | - 61 | -131 | -166 | -138 | - 91 | | 49 - | - 26 | - 06 | + 28 | + 53 | + 48 | + 58 | + 46 | + 41 | + 51 | | Equinox | + 65 | + 62 | + . | 49 | + 57 | + | 69 | + 75 | + 49 | - 02 | -117 | - 230 | - 297 | - 278 | - 217 | - 134 | - (| 62 - | - 06 | + 60 | + 87 | +116 | +138 | +144 | +139 | +126 | +115 | | Summer | + 64 | + 65 | + . | 49 | + 63 | + | 81 | + 44 | - 33 | - 112 | - 186 | -244 | -276 | - 267 | - 213 | -147 | - · | 73 + | 30 | + 96 | +129 | +161 | +174 | +174 | + 167 | +134 | + 109 | # TABLE VI. - MEAN DIURNAL INEQUALITIES OF THE GEOGRAPHICAL COMPONENTS OF MAGNETIC INTENSITY International Quiet Days ``` NORTH COMPONENT (Unit 0.1 y) Month and Universal Time. Hour commencing Season, 1947 2 9 0 1 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 - 03 - 09 + 13 + 18 + 44 + 69 + 88 + 84 + 55 - 17 - 98 - 132 - 110 - 102 - 71 - 26 + 68 + 52 + 65 + 78 + 89 + 109 + 135 + 110 + 40 - 55 - 180 - 290 - 277 - 190 - 97 - 53 January - 02 + 33 + 42 + 45 + 29 - 97 February + 68 + 40 53 25 35 + 66 + 87 + 78 +129 +132 +111 + 02 -157 -144 + 09 + 71 +152 + 99 March - 271 ~ 288 -276 - 206 +111 +132 72 + 97 April + 46 +133 +146 +137 +132 + 62 + 48 + 48 69 + 90 - 49 - 170 - 291 -340 -300 - 239 - 144 17
81 +115 + 135 +153 -120 May + 29 89 + 101 + 48 - 40 - 181 -216 -252 -227 -191 -114 +119 +142 +134 +150 +129 48 50 05 +105 + 86 84 - 47 June + 60 + 57 + 91 -156 + 27 + 205 59 + 59 - 02 -105 - 185 -242 -285 -274 -234 +113 +211 +174 37 52 +184 +157 +140 + 86 - 10 -245 July + 46 + 42 + 75 - 98 -192 -245 -179 - 83 +117 - 162 -263 + 133 +132 +100 45 +113 61 +109 +165 +154 + 76 + 79 + 06 - 98 - 216 August +135 +153 +114 +142 +159 +130 - 237 -345 -273 + 26 + 100 + 128 +152 -354 -381 +151 +186 +198 99 + 130 -125 - 200 +101 - 24 - 287 -298 - 209 September + 94 + 90 + 59 + 29 -130 53 +116 +154 + 91 -323 + 166 +184 +142 +137 93 +101 + 94 + 90 + 91 + 79 + 27 27 27 4 + 64 + 72 + 75 + 89 + 102 + 71 + 42 - 64 - 199 - 269 61 +156 -207 -132 - 55 - 35 + 25 + 34 + 47 + 84 + 97 +113 +133 +107 + 73 October - 259 - 70 + 25 + 23 + 30 + 43 + 38 -168 -114 - 28 + 07 + 49 + 72 November -139 -187 + 54 + 74 + 60 + 72 +120 + 03 - 00 + 09 + 31 + 47 + 57 + 61 + 48 + 42 + 04 - 54 - 72 - 76 - 66 - 57 - 73 - 66 - 17 + 18 December + 14 + 36 Year + 55 + 54 + 52 + 66 + 84 + 88 + 65 + 22 - 50 -139 -221 -256 -234 -178 -111 - 38 + 24 + 65 +100 +112 +120 +117 +104 + 98 Winter + 23 + 17 + 29 + 43 + 55 + 72 + 85 + 68 + 30 - 36 - 118 - 170 - 158 - 118 - 74 - 45 - 22 + 15 + 42 + 43 + 57 + 51 + 50 + 61 Equinox + 76 + 75 + 64 + 73 + 85 + 97 + 81 + 44 - 59 -182 -280 -303 -270 -197 -118 - 46 + 32 + 69 +105 +128 +137 +141 +135 +124 + 66 + 72 + 62 + 82 + 113 + 94 + 29 - 45 - 121 - 199 - 264 - 295 - 273 - 219 - 142 - 24 + 62 + 112 + 152 + 165 + 166 + 161 + 129 + 108 Summer WEST COMPONENT (Unit 0.1 y) January - 04 - 02 - 16 - 21 - 48 - 78 - 86 - 63 + 03 + 94 + 114 + 77 + 65 + 75 + 73 + 12 - 08 21 - 53 - 63 + 88 February 08 07 04 -108 - 223 -296 -217 +183 +208 +154 + 81 78 63 43 04 - 76 - 87 -114 -202 -302 March -301 -156 +101 +292 +381 +340 + 236 +144 49 33 66 63 62 43 76 April - 46 -114 -206 -317 -401 -163 + 90 +282 +390 +366 + 292 + 203 +109 57 70 -347 56 24 36 54 41 15 15 + 16 - 17 - 72 -135 -251 -367 -426 - 277 - 50 + 55 + 35 -411 +310 +146 + 60 May +172 +377 +339 + 247 37 33 53 68 61 - 90 - 88 - 04 - 37 -110 -212 -336 -390 - 41 - 80 -117 -173 -303 -391 June -408 +137 +321 +417 +200 +100 + 73 + 60 + 52 + 66 + 74 + 11 -416 - 297 +414 +325 54 -391 -384 July -412 -254 +395 +390 +330 +144 + 72 + 34 +124 +329 + 242 91 26 71 48 03 -2)4 -311 -139 -302 - 89 - 99 -145 -109 -196 -274 -310 -368 -391 -129 -149 -157 -150 -181 -266 -349 -398 + 443 - 37 August +126 + 363 + 81 + 78 + 67 + 13 + 366 + 457 +253 +128 55 50 - 93 -398 September -129 -149 -157 -150 + 194 +425 +392 + 296 +202 +126 +110 +114 + 95 +389 25 51 55 - 35 - 57 - 51 - 61 - 80 - 95 - 129 - 201 - 293 -262 - 98 + 90 October +201 +213 +189 +123 +126 +133 +106 + 90 + 61 + 28 + 08 - 07 - 58 - 70 -151 - 35 - 59 - 39 - 43 - 39 - 89 - 146 - 46 + 68 +146 +152 +121 + 99 + 94 + 90 November + 95 + 47 + 37 + 01 - 61 -113 - 63 - 58 - 42 - 30 - 31 - 43 - 35 - 52 - 67 - 37 + 35 + 96 + 145 + 147 +127 + 84 + 60 + 57 + 10 - 24 - 54 - 69 December Year -37 -49 -58 -70 -96 -147 -197 -248 -291 -246 -102 +90 +243 +304 +286 +221 +156 +99 +73 +56 +42 +12 -15 -27 Winter -46 -41 -25 -21 -20 -32 -47 -70 -125 -150 -88 +11 +106 +149 +138 +111 +88 +76 +72 +34 +10 -22 -49 -59 Equinox - 58 - 72 - 80 - 88 - 88 - 119 - 179 - 267 - 349 - 303 - 127 + 119 + 291 + 352 + 322 + 237 + 169 + 113 + 79 + 70 + 50 + 04 - 38 - 38 Summer -\ 08\ -\ 32\ -\ 70\ -\ 102\ -\ 179\ -\ 291\ -\ 365\ -\ 406\ -\ 399\ -\ 285\ -\ 92\ +\ 140\ +\ 332\ +\ 412\ +\ 397\ +\ 316\ +\ 210\ +\ 108\ +\ 70\ +\ 66\ +\ 65\ +\ 53\ +\ 42\ +\ 17 VERTICAL COMPONENT (Unit 0.1 y) ``` | January | + 14 + 14 | 4 + 22 | + 22 | + 24 | + 34 | + 12 | - 04 | - 22 | - 36 | - 58 | - 68 | - 80 | - 20 | + 14 | + | 10 | + 14 | + 14 | + 24 | + 26 | ; + | 26 | + 04 | + 16 | + 04 | |-----------|-----------|--------|------|------|------|------|------|------|------|-------|---------------|-------|-------|------|-----|-----|------|------|-------|------|------------|----|------|------|------| | February | + 27 + 19 | 9 + 29 | + 25 | + 25 | + 33 | + 29 | + 33 | + 47 | + 03 | - 57 | - 83 | - 95 | - 81 | - 37 | + | 03 | + 11 | + 13 | + 13 | + 07 | / + | 11 | + 13 | + 13 | + 09 | | March | + 14 00 | + 02 | + 10 | + 16 | + 18 | + 26 | + 66 | + 58 | + 02 | - 92 | -132 | -138 | - 104 | - 54 | + | 14 | + 66 | + 56 | + 54 | + 38 | 3 + | 28 | + 30 | + 20 | + 10 | | April | + 63 + 59 | 9 + 61 | + 83 | + 67 | + 59 | + 69 | + 59 | + 27 | - 39 | - 135 | -201 | -189 | -137 | - 69 |) – | 19 | + 07 | + 41 | + 49 | + 43 | 3 + | 35 | + 25 | + 17 | + 15 | | May | + 51 + 6 | 1 + 73 | + 93 | +113 | +123 | +103 | + 63 | + 01 | - 93 | -217 | - 289 | -267 | -187 | - 85 | . – | 07 | + 49 | + 83 | + 83 | + 65 | 5 + | 59 | + 51 | + 45 | + 33 | | June | + 36 + 30 |) + 26 | + 60 | ÷ 74 | + 92 | + 70 | + 20 | - 10 | - 60 | -136 | -210 | - 200 | -156 | - 66 | ; - | 10 | + 48 | + 78 | + 104 | + 82 | . + | 64 | + 38 | + 16 | + 10 | | July | + 35 + 3 | 3 + 33 | + 61 | + 83 | + 93 | + 47 | + 03 | - 47 | - 99 | -151 | -221 | -211 | -161 | - 83 | . – | 09 | + 49 | + 99 | +117 | + 99 |) + | 85 | + 55 | + 41 | + 27 | | August | + 45 + 2 | 7 + 29 | + 39 | + 63 | + 69 | + 61 | + 39 | - 17 | - 83 | - 167 | - 253 | - 247 | -159 | - 49 |) + | 53 | + 77 | + 93 | + 79 | + 71 | + ۱ | 69 | + 55 | + 45 | + 49 | | September | + 71 + 5 | 1 + 43 | + 37 | + 33 | + 23 | + 53 | + 47 | - 09 | - 77 | -147 | -187 | -189 | - 143 | - 87 | - | 13 | + 43 | + 73 | + 69 | + 73 | ; + | 67 | + 73 | + 61 | + 33 | | October | + 38 + 38 | 3 + 38 | + 34 | + 40 | + 16 | + 16 | + 32 | + 18 | - 30 | - 86 | -1 3 0 | -116 | - 48 | - 12 | + | 18 | + 10 | + 04 | + 08 | + 18 | 3 + | 20 | + 24 | + 22 | + 24 | | November | + 09 + 0 | 5 + 07 | + 01 | + 05 | + 13 | + 01 | + 07 | + 19 | - 17 | - 61 | - 51 | - 51 | - 33 | + 19 |) + | 07 | + 05 | + 09 | + 05 | + 17 | 7 + | 25 | + 25 | + 31 | + 09 | | December | + 19 + 19 | 9 + 19 | + 15 | + 17 | + 19 | + 07 | + 05 | - 23 | - 57 | - 81 | - 69 | - 71 | - 71 | - 45 | . – | 03 | + 37 | + 43 | + 53 | + 47 | , + | 47 | + 33 | + 23 | + 13 | | V | | | | | | | | | | | 4 = 0 | | 100 | | | | | | | | | | | | 1 20 | | Year | + 35 + 30 |) + 32 | + 40 | + 47 | + 49 | + 41 | + 31 | + 04 | - 49 | -116 | -158 | -155 | - 108 | - 46 | , + | 04 | + 35 | + 51 | + 55 | + 49 |) + | 45 | + 36 | + 29 | + 20 | | Winter | + 17 + 14 | 4 + 19 | + 16 | + 18 | + 25 | + 12 | + 10 | + 05 | - 27 | - 64 | - 68 | - 74 | - 51 | - 12 | + | 04 | + 17 | + 20 | + 24 | + 24 | + | 27 | + 19 | + 21 | + 09 | | Equinox | + 47 + 37 | 7 + 36 | + 41 | + 39 | + 29 | + 41 | + 51 | + 24 | - 36 | - 115 | -163 | -158 | -108 | - 56 | ; | 00 | + 32 | + 44 | + 45 | + 43 | 3 + | 38 | + 38 | + 30 | + 21 | | İ | | . , | | | | | | - 10 | - 01 | -160 | -242 | - 221 | -166 | _ 71 | _ | 0.7 | ٠ | ± 00 | ٠,٠ | 4 70 | | | + •0 | ± 25 | + 20 | | Summer | + 42 + 38 | 3 + 40 | + 63 | + 83 | + 94 | + 70 | + 31 | - 18 | - 84 | - 168 | -243 | -231 | - 166 | - 71 | . + | 07 | + 56 | + 88 | + 96 | + 79 |) + | 69 | + 50 | + 37 | + 30 | Summer ## TABLE VII. - MEAN DIURNAL INEQUALITIES OF THE MAGNETIC ELEMENTS DECLINATION, INCLINATION AND HORIZONTAL INTENSITY International Disturbed Days ## DECLINATION WEST (Unit 0.01) ``` Month and Universal Time. Hour commencing Season, 1947 0 1 2 5 6 8 10 11 12 13 14 15 16 17 18 19 21 20 22 23 January -242 -282 -214 -094 -228 -042 -026 -014 +524 -104 -116 +062 + 284 +488 +496 + 484 +210 +372 +016 - 264 - 330 - 292 -326 -364 February -401 -193 + 195 -005 ~221 -339 -229 -161 -131 -215 - 283 -197 +061 +357 +627 +821 +965 +761 +605 +191 -331 -647 645 595 -780 +122 - 132 -452 March -454 -166 +082 +086 + 100 +556 +996 +1082 - +882 +548 +184 - 136 - 196 -710 +1090 -612 718 April - 294 - 222 - 434 - 468 -300 -356 -310 -114 -200 +056 +330 +736 +940 +748 + 530 + 228 +124 410 -198 -672 +854 + 288 -322 - 542 May - 595 -663 -713 -201 - 291 -101 - 257 -589 -139 -801 +089 +443 +717 +851 +813 +621 +483 -053 +243 +101 +027 +021 +049 -059 June -274 -238 -134 - 568 - 516 -608 -794 -290 +074 +412 + 582 -038 -634 +690 +638 +616 +436 +114 +368 +066 +074 +066 000 -050 -124 -710 -036 -196 July - 364 -708 -218 -726 -758 - 540 -220 +218 +582 +834 +766 +658 +444 +324 + 202 +192 +170 +180 +052 -008 August -143 -121 -311 -217 -491 -439 - 575 - 587 - 269 +475 +735 +253 -045 -421 -681 +841 +907 +010 +447 +049 +057 -093 - 107 -173 September - 526 - 568 -706 - 306 -094 -120 -308 - 594 -534 -080 +518 +750 +1084 +1078 +834 +1020 +438 +096 -260 - 200 -678 - 228 - 392 234 October -606 -554 -664 -468 -288 -014 +158 +152 -008 -086 +328 +632 +1040 +1082 +864 +534 +290 - 226 -490 -722 +440 -052 - 588 -748 -130 -048 -582 November -338 -010 - 080 -084 + 164 -478 -384 -084 +102 +062 +434 +556 +790 +522 +630 +326 -072 -066 -322 - 304 -612 -027 -151 - 245 December -455 -025 +067 +061 +037 +031 +125 + 295 +083 +483 +509 +425 + 275 +015 -449 -481 -371 Year -327 -388 -371 -257 -276 -233 -219 -301 -354 -183 +091 +432 +728 +840 +790 +661 +432 +219 +035 -062 -235 -298 -378 -347 Winter -326 - 369 -296 -142 -125 -068 +003 -027 -108 -092 +103 +343 +539 +654 +630 +575 +354 +145 +044 -122 -307 - 500 -409 Equinox -505 -593 -600 -374 -243 -104 -067 -154 -271 -070 +251 +567 +964 +1046 +957 +750 +489 +215 -055 -125 -461 -438 -624 -561 Summer -150 -203 -217 -257 -460 -527 -594 -724 -684 -389 -082 +387 +681 +821 +784 +658 +453 +297 +117 +060 +062 +044 -002 -073 ``` #### INCLINATION (Unit 0.01) ``` January -071 -063 -082 -194 -206 -144 -185 -115 -072 +015 +087 +088 +078 +043 +023 +057 +042 +086 +106 +144 +114 +125 +075 +057 February -138 -164 -214 -193 - 258 -225 -187 -120 -033 +067 +158 +169 +162 +146 +196 +211 +154 +121 +065 +074 +050 +004 +020 -057 March -308 - 280 -304 - 367 -392 -366 -349 - 238 -150 -042 +064 +076 +094 +190 +199 + 205 +180 +159 +210 +305 +361 +286 + 280 +188 -010 +031 April -035 -055 + 177 +194 +081 -051 -013 +027 -035 -020 -096 -097 -099 +127 +046 +076 -099 -003 - 107 -118 +102 - 029 -014 Mav -108 -0.72 ~124 -114 -093 -090 -059 +019 +187 +128 +138 +121 +155 +115 +148 +138 +027 -064 ~099 -105 -087 -094 -
057 June -203 -169 -140 -159 -099 -045 +060 +214 +220 +174 +161 +168 +191 +178 +123 +078 -108 -127 -153 -114 -093 -039 -002 July -072 -047 -068 - 106 -106 -085 +014 +080 +131 +225 +257 +221 +137 +070 +085 +065 +055 -103 -350 -232 - 144 -047 -015 +034 -137 -139 -160 August -160 -203 -139 +063 -045 -103 -101 +002 +123 +329 +363 +185 + 176 +124 +031 +097 +077 - 100 -098 -079 -115 September -256 - 200 - 254 -319 -367 -274 -157 +027 +076 +148 +267 +266 + 223 +170 +095 +130 +172 +114 +110 +052 +056 +054 -028 - 108 October - 132 - 205 - 240 -164 - 143 -036 +075 +143 +114 +113 +002 - 192 - 188 -258 -247 +181 +251 +266 +232 +132 +115 +127 +137 083 -144 -150 November -114 -124 -138 -177 -152 -151 -101 -035 -002 +012 +138 +130 +213 +229 + 209 +237 +099 +062 +014 -021 -028 000 -123 -132 -031 -085 -117 -135 -123 -118 -076 December -008 +170 +143 -055 +024 +070 +089 +133 +111 +158 +121 +014 +003 -007 -031 Year -127 -134 -148 -176 -187 -172 -137 -065 +013 +090 +144 +141 +145 +133 +130 +114 +111 +068 +014 +015 +020 +025 -008 -008 Winter -074 -089 -117 -167 -171 -176 -170 -144 -106 -032 +036 +071 +114 +106 +129 +148 +158 +155 +121 +098 +054 +039 +018 +005 Equinox -176 -183 -208 -232 -278 -246 -192 -091 -020 +077 +163 +179 +162 +168 +151 +088 +116 +089 +082 +092 +135 +111 +008 Summer -130 -129 -118 -129 -113 -094 -048 +040 +164 +226 +233 +172 +159 +125 +111 +106 +059 -041 -160 -146 -131 -077 -048 -035 ``` #### HORIZONTAL INTENSITY (Unit 0.1 Y) ``` January +111 +261 +223 +133 +197 +101 + 53 - 83 -185 -187 -151 - 61 + 01 - 13 + 19 - 57 - 69 -131 - 99 -129 - 12 - 38 - 34 February - 166 -178 -206 - 12 -304 -260 - 02 + 20 + 180 +200 + 254 + 220 +318 + 272 + 228 +130 -300 -196 -102 - 72 56 March - 68 - 86 - 248 -400 +338 +312 +384 +440 +254 +118 -204 -200 -272 -172 + 46 - 68 -392 -352 -404 +316 +424 +408 - 206 30 - 73 - 249 -189 -117 + 275 + 11 + 37 +115 +107 - 19 - 87 -351 -379 -107 + 209 +175 +277 + 19 April + 65 +127 85 65 15 May + 76 + 108 + 74 -328 -238 - 288 - 276 -208 -198 -150 +234 +190 +182 +100 +162 + 96 + 160 +118 -312 +108 +184 +236 52 34 -113 June - 01 -157 ~ 233 +191 +149 + 67 + 79 -393 -341 - 289 +345 +357 +209 +149 +309 +115 + 273 - 383 - 337 -307 11 + 265 55 July + 38 + 48 + 48 - 24 -140 - 46 + 20 +108 +126 +126 -226 -396 -462 -422 -302 -180 -142 +282 +658 +456 +316 +126 + 40 50 - 35 - 17 August +145 +137 +203 +107 +135 +151 +101 +103 - 221 -571 -629 -339 -321 -187 + 33 51 + 79 +303 +247 +309 + 161 + 61 September - 05 +237 +163 +241 +321 +373 +247 +111 -141 -217 -317 -455 -345 -207 + 03 + 55 + 91 + 185 + 101 + 63 - 71 + 07 -481 -341 - 45 October - 21 -185 + 11 + 39 -105 + 57 + 263 +145 +207 +241 +197 +307 + 275 +155 +133 - 289 -409 - 365 - 257 - 11 - 05 - 67 - 37 - 11 + 43 +133 + 51 November + 89 + 73 +217 +175 +177 +105 + 09 - 39 -219 -165 -221 -229 -185 -223 +161 +177 - 69 December + 99 +157 +151 +145 +167 + 73 _ - 137 -137 -143 - 159 + 33 + 71 + 17 +125 +157 - 147 - 191 -203 - 105 + 27 35 Year +137 +134 +153 +190 +204 +191 +144 + 42 - 76 -203 -288 -280 -266 -204 -139 - 60 - 19 + 54 +121 + 89 + 53 + 16 + 21 - 12 Winter + 78 + 87 + 136 + 200 + 194 + 205 + 197 + 166 + 114 - 03 - 104 - 150 - 203 - 158 - 147 - 146 - 141 - 131 - 84 - 65 - 13 - 14 - 09 - 11 Equinox +181 +180 +208 +242 +312 +265 +195 + 57 - 52 -205 -332 -345 -286 -238 -136 + 47 + 61 + 99 + 76 + 06 -109 -110 - 29 - 86 ``` +153 +135 +116 +128 +105 +104 + 38 - 96 -290 -400 -429 -345 -311 -216 -135 - 82 + 24 +195 +373 +324 +281 +172 +100 + 63 # TABLE VII. - MEAN DIURNAL INEQUALITIES OF GEOGRAPHICAL COMPONENTS OF MAGNETIC INTENSITY International Disturbed Days #### NORTH COMPONENT (Unit 0.1 y) ``` Mont.h and Universal Time. Hour commencing Season 1947 1 3 6 8 10 11 12 13 14 15 16 17 18 19 20 21 23 January +116 +104 +129 +266 +241 +135 +197 +101 + 62 - 71 - 188 -210 -193 -105 - 47 - 57 - 00 - 90 70 - 105 -101 - 17 68 38 _ February + 228 +331 +280 +154 + 06 -331 - 263 -272 -248 -118 - 11 + 79 + 21 + 75 +214 +232 - 169 +271 -328 -357 88 07 57 March +128 -252 -367 + 29 - 227 -345 + 404 + 374 +412 +459 +433 + 395 +239 75 -212 - 288 -269 -165 -291 -334 20 55 - 329 - 228 Apr11 + 53 + 64 +153 +124 +124 - 48 -351 -404 -191 - 193 +146 +250 + 84 08 +138 -253 +262 + 80 36 43 + 35 May +167 - 292 +178 +121 +167 +140 +129 +127 -250 - 283 - 11 +185 14 -222 -313 - 373 - 269 + 84 + 172 +230 +236 - 205 +175 +104 -361 June +159 +125 + 54 -320 -339 -374 +273 +213 +169 +118 -348 - 288 - 168 +346 -356 +113 83 51 +271 +330 + 255 + 200 + 59 July + 59 + 45 -436 - 21 +249 + 57 + 51 + 189 -157 -341 +124 +157 -254 - 105 74 -436 -351 -210 +630 +432 +296 + 108 August +211 +150 + 177 + 28 -166 -510 +173 +119 +140 +148 -596 -378 -393 - 267 - 51 - 84 + 10 + 55 +294 +248 +300 +167 + 70 September +212 +302 +344 +376 - 85 -165 -305 -522 -517 - 90 - 22 + 50 +174 +123 + 282 +254 +138 -302 + 66 -439 - 20 October +255 +298 +237 +329 +273 +138 +117 -175 - 38 -332 - 00 - 46 - 59 +198 -315 -394 -498 -459 - 02 - 37 +110 + 325 + 93 - 84 - 05 November - 53 +131 +103 +166 +171 +182 +215 +163 +169 +111 + 17 -267 -235 - 266 -283 -212 -213 -32 + 80 + 98 + 32 + 07 - 38 - 95 December +103 + 58 +120 +134 +157 +151 +137 +149 +161 + 69 - 179 - 191 -235 + + -174 -225 -149 -158 +165 +167 +185 +211 +226 +210 +162 + 69 - 43 -183 -293 -315 -329 -278 -209 -120 - 58 + 33 +116 + 93 + 74 + 43 + 55 + 20 Year Winter +106 +120 +161 +211 +203 +208 +194 +166 +122 + 05 -112 -179 -249 -216 -203 -197 -171 -143 - 87 - 53 + 16 + 32 + 38 Equinox +225 +231 +260 +273 +329 +271 +199 + 70 - 26 -196 -350 -392 -370 -330 -221 - 22 + 16 + 78 + 80 + 17 - 66 - 68 + 29 - 34 +164 +151 +134 +149 +145 +150 + 92 - 29 -223 -359 -416 -375 -368 -288 -205 -141 - 18 +165 +357 +314 +272 +165 + 98 + 68 Summer ``` #### WEST COMPONENT (Unit 0.1 y) ``` January - 06 - 84 - 00 + 19 + 10 - 47 - 79 - 49 - 50 - 24 - 76 - 129 - -113 -137 - 03 -163 -193 -177 -185 -203 90 - 05 -183 -345 -340 -323 96 76 + 02 +120 +235 +254 +280 +256 +115 +189 - -184 February - 24 - 76 - 129 -147 -107 + 05 +140 +283 +394 + 290 -108 + 87 +484 +371 March -337 -131 - 74 17 +112 +108 - 51 + 34 + 19 + 262 + 497 + 531 +552 +106 - 189 -359 +456 +297 - 307 84 -146 -385 -446 -450 -179 - 144 - 42 - 89 - 248 - 29 April - 227 -154 - 160 -233 - 147 +112 +361 +483 +436 +434 + 297 +183 + 168 +113 - 107 -355 -184 -291 - 27 -117 -304 May 80 -139 -335 -302 - 01 +190 - 389 -482 -114 +330 +419 + 263 +400 + 306 +148 + 85 + 11 + 43 + 57 June -102 - 46 -291 + 26 -114 -262 -324 - 221 -450 -402 17 +162 +259 +310 + 301 +309 + 231 +248 +119 + 95 + 84 + 19 + 70 - 11 - 86 -173 July -401 -425 -354 -195 ~ 13 -110 - 58 -357 -408 +260 +414 +384 + 240 +220 +218 +179 + 144 +343 - 30 August -244 +452 - 53 -211 -140 - 99 - 207 - 369 -409 - 249 +196 +495 - 23 -344 +394 +389 + 247 +148 + 82 - 47 68 - 23 September - 96 - 133 -208 -241 -275 -336 -109 + 13 -146 -340 -321 + 195 + 323 + 520 + 540 +544 + 82 -117 +454 + 249 -122 -362 - 77 October -313 -216 -102 + 39 +110 +103 - 08 +153 - 29 -132 - 279 - 304 -299 -261 +126 + 280 +486 +515 +417 + 286 + 241 -341 -395 - 25 - 43 - 37 -163 + 31 + 84 + 63 + 81 - 76 -319 November -240 -168 -182 - 42 - 15 +143 -314 -166 +224 +260 +393 +241 + 297 32 December - 39 + 13 + 11 + + 59 + 48 + 29 + 62 + 146 +113 - 98 -125 -182 - 240 -115 60 + 234 +247 + 239 + 204 + 20 - 234 -251 -188 19 -151 -184 -172 -105 -113 - 92 - 93 -154 -202 -132 - 00 +183 +343 +413 +398 +342 +227 +126 + 39 - 18 -117 -156 -198 -187 Year Winter -161 -182 -135 - 42 - 34 - 02 + 35 + 14 - 38 - 49 + 38 + 158 + 253 + 322 + 311 + 282 + 165 + 55 + 09 - 76 - 166 - 269 - 273 Equinox -239 \quad -286 \quad -285 \quad -159 \quad -77 \quad -11 \quad -03 \quad -72 \quad -153 \quad -72 \quad +78 \quad +244 \quad +466 \quad +517 \quad +487 \quad +408 \quad +271 \quad +131 \quad -17 \quad -65 \quad -264 \quad -252 \quad -338 \quad -313 \quad +131 \quad -17 \quad -65 \quad -264 \quad -252 \quad -338 \quad -313 \quad -17 - Summer -54 -85 -96 -115 -227 -263 -310 -402 -413 -275 -116 +148 +311 +401 +395 +337 +245 +191 +125 +87 +80 +52 +16 -29 ``` ### VERTICAL COMPONENT (Unit 0.1 y) ``` - 23 - 35 - 29 - 65 - 195 - 191 - 183 - 163 - 125 - 143 - 127 - 127 - 79 + 07 + 83 + 167 + 189 + 167 + 207 + 193 + 165 + 131 + 101 + 79 - 67 - 59 - 103 - 153 - 155 - 157 - 145 - 117 - 113 - 141 - 153 - 149 - 121 - 43 + 95 + 201 + 273 + 299 + 251 + 197 + 171 + 127 + 59 - 09 January February March -212 -140 + 24 +290 -280 -326 -378 -334 -280 -260 -234 -246 -306 -256 +508 +692 +656 + 568 +172 + 32 - 276 April - 38 - 38 - 68 - 92 - 78 - 92 -140 -204 - 208 -160 - 44 - 34 - 90 10 +142 +188 +230 +270 + 236 +106 +184 + 58 - 31 - 55 - 27 - 61 - 87 + 53 + 35 - 59 - 121 -145 -115 -187 +173 May -111 -191 -223 +133 +199 +203 +181 +139 June -137 -203 -235 -159 -159 -155 -149 -153 - 179 -235 -131 - 11 +163 + 245 +341 +361 + 301 +221 + 163 +131 +121 - 07 - 35 July -125 -117 - 73 + 01 - 73 -143 -183 -227 - 177 +119 +319 +255 + 237 + 41 - 137 -213 + 237 + 297 +133 01 - 71 August - 231 -147 -135 - 05 -231 -159 -131 -121 -111 87 -187 - 205 +183 + 297 +385 +403 +357 +237 +163 +101 - 15 63 -286 - 236 - 80 September -314 -374 -242 - 224 -194 -136 - 26 +106 - 270 -318 -360 +334 +578 +806 +824 +616 + 324 +182 + 22 ~336 -406 -181 -215 -209 -187 -173 -108 -106 -120 -112 -108 -169 -177 -102 - 98 -165 - 62 - 81 + 73 - 32 + 66 October -121 -227 -269 - 193 + 209 +481 +137 - 57 - 229 +419 +433 +387 +283 +233 -260 - 50 November ~188 -168 -124 +226 +258 +294 +302 + 256 +190 - 146 +166 + 26 December - 75 - 71 - 61 - 69 - 95 - 91 - 75 - 77 - 33 - 69 + 19 + 67 - 65 -115 -103 +119 + 85 + 55 + 33 ~ 23 + 175 +129 +163 +177 Year -119 -152 -155 -169 -175 -151 -140 -126 -133 -160 -172 -163 -116 - 14 +127 +254 +340 +360 +331 \cdot +256 +191 +118 + 22 - 56 Winter -75 -106 -91 -114 -140 -132 -130 -113 -104 -120 -117 -103 -77 -01 +106 +173 +219 +233 +222 +189 +158 +92 +41 -11 Equinox -216 -237 -242 -240 -234 -212 -184 -188 -210 -208 -180 -102 + 28 +206 +412 +542 +536 +460 +331 +215 +129 ~188 - 40 - 179 Summer - 95 -134 -138 -150 -146 - 85 - 77 - 82 -106 -149 -190 -205 -170 - 70 + 69 +178 +260 +310 +310 +249
+201 +134 + 64 + 24 ``` TABLE VIII. - HARMONIC COMPONENTS OF THE DIURNAL INEQUALITY OF MAGNETIC INTENSITY Values of a_n , b_n , in the series Σ ($a_n \cos nt + b_n \sin nt$), t being reckoned in hours from 0^h U.T. and converted into arc at the rate of 15° to each hour. | Month
and | Y Y Y Y Y Y Y Y Y Y Y Y Y 13.7 + 8.0 - 8.7 - 3.8 + 4.0 - 0.7 + 0 + 17.7 + 5.4 - 11.1 + 0.4 + 2.1 - 1.0 + 1 | | | | | | | | | | WES | ST COM | ONENT | | | | | | VERT | CAL C | OMPON | ENT | | | |--|--|---|--|--|--|--|--|--|---|--|--|--|--|--|--|--|---|---|--|--|---|--|---|--| | Season | а ₁ | ^b 1 | a ₂ | <i>b</i> ₂ | а ₃ | <i>b</i> ₃ | a_ 4 | b _ 4 | a ₁ | $b_{\mathbf{l}}$ | <i>a</i> ₂ | b ₂ | <i>a</i> ₃ | <i>b</i> ₃ | <i>a</i> 4 | <i>b</i> 4 | a ₁ | b_{1} | a_{2} | $^{b}\mathbf{_{2}}$ | <i>a</i> ₃ | <i>b</i> ₃ | a_{4} | b 4 | | | | | | | | | | | | | A11 | Days | | | | | | | | | | | | | | 1947 | Υ | Y | Υ | Y | Y | Υ | Υ | Υ | Υ | Y | Υ | Υ | Υ | Υ | Υ | Υ | Y | Υ | Υ | Υ | Υ | Υ | Υ | Υ | | Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Year Winter Equinox Summer | +13.7
+17.7
+18.3
+18.7
+21.9
+19.5
+23.6
+21.5
+11.5
+16.5
+17.1
+9.3 | + 8.0
+ 5.4
- 1.2
- 6.2
- 7.4
- 2.0
+ 3.6
+ 5.1
+ 6.9
+ 0.4
+ 1.4 | - 8.7
-11.1
-13.3
-11.4
-11.4
-14.1
-11.3
-12.6
-11.0
- 5.9
- 3.0
-10.0
- 5.8
-12.0 | -3.8
+0.4
-1.2
-0.0
+0.1
+0.7
+1.7
+4.0
+0.9
-2.8
-3.4
-0.3
-2.6
+1.0 | +4.0
+2.1
+5.1
+0.9
-0.9
+0.5
-0.0
+1.7
+4.0
+1.6
+0.7
+1.8
+2.1
+3.2 | -0.7
-1.0
-1.8
+0.6
-1.0
-0.3
-2.3
-1.3
-2.2
-0.7
-1.5
-1.2 | +0.1
+1.9
-0.0
+1.1
+1.4
+0.8
+0.2
+0.7
-0.6
-0.0
-0.3
+0.2
-0.6
+0.3 | -1.5
+1.0
+1.3
-1.5
-0.1
+0.3
+2.1
+0.6
-0.1
+0.2
+0.5
+0.5
+0.5 | - 8.7
-14.7
-10.8
- 9.3
- 8.6
- 7.4
-12.0
-16.7
-14.8
-10.3
-10.5 | -11. 4
-13. 1
-19. 3
-22. 8
-26. 7
-23. 5
-17. 1
-17. 5
- 3. 9
-15. 8
- 7. 2
-15. 3 | - 1.8
- 1.5
+ 2.3
+ 4.2
+ 13.6
+ 10.2
+ 7.9
+ 8.9
+ 0.6
- 0.5
- 1.9
+ 4.0
- 1.4
+ 3.4
+ 10.1 | +10.0
+13.0
+16.3
+12.8
+13.2
+14.4
+13.9
+14.1
+7.5
+5.7
+11.6
+7.4
+13.9 | -1.8
-2.7
-5.3
-6.3
-4.9
-4.4.5
-6.2
-4.9
-2.7
-1.6
-3.9
-1.8
-4.8 | -5.5
-9.2
-8.7
-4.1
-3.8
-5.4
-7.1
-7.1
-6.8
-3.0
-1.8
-5.4
-3.0
-8.0 | +3.5
+3.0
+2.1
+0.1
-0.0
-0.9
+0.7
+3.3
+1.4
+0.6
+1.5
+1.3
+3.2 | -0.2
+1.5
+2.2
-0.3
-0.5
+0.5
+1.4
-0.1
+2.4
+1.6
+1.3
+2.1
+1.5 | + 0.5
+ 8.2
+10.4
+ 6.9
+ 5.4
+ 0.7
+ 1.2
+ 3.4
+ 4.5
+ 2.9
+ 2.7 | - 5. 1
- 16. 1
- 5. 1
- 6. 6
- 9. 7
- 6. 8
- 11. 5
- 15. 4
- 11. 1
- 6. 7
- 5. 7
- 8. 8
- 5. 6
- 12. 0 | - 4.1
- 8.6
- 8.3
-11.3
-10.8
-10.9
-10.2
- 7.6
- 2.9
- 7.5
- 3.1
- 8.8 | -0.8
-1.5
-4.3
+0.5
-0.0
-1.2
-0.1
+0.1
-0.6
+0.4
-0.4
-0.3
-0.2 | +2.477773783928 6 34
+1.40 +2.43.42.14 +4.45 +1. |
+0.3
+1.0
+0.9
+0.9
+0.9
+0.9
+0.1
+0.3
+0.3
+0.7 | -1.2
-1.2
-1.4
-0.9
-0.2
-0.1
-0.5
-0.6
-1.8
-1.0
0.0
-0.8
-1.3 | -0.3
-0.5
+0.3
+0.4
-0.4
-0.4
-0.1
-0.0
+0.1
-0.0 | | | | | | | | | | | | INTERN | ATIONA | L QUIE | r days | 3 | | | | | | | | | | | | Year
Winter
Equinox
Summer | + 7.8
+17.1 | + 2.8
- 0.3 | - 5.8
- 9.6 | -1.6
+0.1 | +2.2
+2.9 | -0.9
-2.0 | -0.6
-0.2 | +0.8
+1.3 | i | - 8.0
-18.3 | - 0.9
+ 4.9 | + 6.1
+13.0 | ~2.1
~5.9 | -2.8
-6.5 | +1.2
+3.0 | +1.8
+2.2 | + 3.3 | - 0.9
- 0.9 | - 2.6
- 5.5 | -0.2
-0.9 | +1.1
+3.0 | 70.3
+0.0 | -0.6
-1.3 | -0.0
+0.2 | | | | | | | | | | | IN | rernat: | IONAL I | OISTUR | BED DA | ays | | | | | | | | | | | | Year
Winter
Equinox
Summer | +20.5
+13.1
+21.4
+27.0 | +13.0
+ 2.9 | - 5.9
-15.5 | -3.8
+5.1 | +0.9
+4.2 | -1.5
-0.1 | -2.0
+0.9 | +0.2
-1.5 | -20.5
-30.8 | - 5.5
-13.1 | + 2.2
- 1.9
+ 0.0
+ 8.5 | +10.6
+14.4 | -0.6
-2.2 | -3.8
-8.0 | +1.7
+4.0 | +2.0
+0.9 | - 4.1 | -17.9
-34.8 | -11.0
- 6.0
-15.7
-11.3 | +0.0
+2.9 | †1.5
†3.6 | +0.3
+2.1 | -1.3
-1.3 | -0.4
-1.5 | # TABLE IX. - HARMONIC COMPONENTS OF THE DIURNAL INEQUALITY OF MAGNETIC INTENSITY Values of c_n , α_n in the series Σ c_n sin $(nT + \alpha_n)$, T being reckoned in hours from midnight, Abinger Local Mean Time, and converted into arc at the rate of 15° to each hour. New phase-angles expressing the inequalities relative to Local Apparent Time may be obtained from the tabulated angles by applying corrctions α , 2α , 3α , 4α respectively, where α has the following values:- | | | | Januar
Februa
March | .ry +3 | 19
28
12 | - | April
May
June | +0 4
-0 51
+0 5 | | Αι | uly
ugust
eptembe | +1
+0
r -1 | 59 | | October
November
December | | 42 | | Winter
Equino
Summer | 0× -0 | 36 | | | | |--|--|---|-----------------------------|--|---|---|---|---|--|--|--|---|--|--|----------------------------------|--|--|--|--|--|---|---|--|--| | Month
and | | | N | ORTH (| COMPONE | ENT | | | | | W | EST CO | OMPONEN | IT | | | | | VER | TICAL | COMPO | ENT | • | | | Season | °1 | α_{1} | ^с 2 | $\alpha_{\mathbf{\hat{2}}}$ | с ₃ | α3 | ^C 4 | α4 | c_{1} | $\alpha_{\mathbf{l}}$ | ^с 2 | α_2 | ^с 3 | α_3 | c ₄ α | 4 | c ₁ | $\alpha_{\mathbf{l}}$ | c_{2} | α_{2} | с ₃ | α_3 | ^C 4 | α 4 | | | | | | | | | | | | | All | Days | | | | | | | | | | | | | | 1947 | Y | 0 | Y | 0 | Y | 0 | Υ | 0 | Υ | 0 | Y | 0 | Υ | 0 | γο |) | Υ | o | Υ | 0 | Y | 0 | Υ | ٥ | | Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Year Winter Equinox Summer | 8.9
15.9
18.5
18.4
19.8
23.1
21.0
24.8
23.7
21.8
12.6
9.4
17.1
11.6
20.3
22.1 | 109
112
101
95
81
67
44
79
59
86 | 11.1
13.4 | 247
273
266
271
271
274
280
288
275
245
222
269
247
276 | 4.1
2.3
5.4
1.1
1.4
0.6
2.3
2.1
4.7
1.6
2.2
2.4
3.6 | 127
101
116
111
57
224
125
182
129
121
116
157
124
119
118
174 | 1.1
1.5
1.4
1.3
1.8
1.4
0.9
2.1
0.9
0.6
0.2
0.3
0.5
0.7
0.8 | 180
45
1
146
95
72
8
49
260
356
285
24 | 10.0
14.4
19.7
22.1
24.2
28.1
27.7
26.4
23.9
18.7
12.8
11.8
20.9
26.9 | 218
229
210
203
198
196
207
225
233
234
250
215
233
223 | 10.1
13.2
16.8
18.6
16.7
16.4
16.5
15.5 | 11
15
48
38
29
34
25
4
357
343
20 | 2.1
5.8
9.6
10.1
7.5
6.2
7.0
8.4
4.0
2.4
6.6
3.5
9.3 | 199
198
213
238
234
221
213
222
217
223
227
217
212
212 | | 15
13
16
16
17
13
13
11
14
17 | 6.5
16.1
9.7
12.3
11.9
11.2
12.7
15.4
11.2
6.8
6.6 | 123
123
145
128
155
178
174
170
150
153
154
168 | 4.2
8.7
9.3
11.3
9.5
10.9
10.9
7.1
3.6
2.9
7.5 | 271
264
271
272
266
277
264
268
267
267 | 0.8
3.8
3.8
3.7
2.4
2.8
3.8
3.9
1.6
0.8
2.6
1.3
3.5 | 91
85
76
77
89
76
87
73
89
76
89
133
84
98
98
79 | 1.3
1.5
0.9
0.5
0.4
1.1
0.7
1.8
1.0
0.1 | 260
250
281
282
336
188
207
236
267
271 | | 2 | 1 22.1 | 10, | 12.1 | 2/4 | 0.0 | 1/4 | 0.9 | 00 1 | | | | | 7.2
ET DAYS | | 0.2 3) | • ' | 111.7 | 1)0 | 10.0 | 270 | 3.2 | 0) | 0.4 | 244 | | Year
Winter
Equinox
Summer | 14.3
8.3
17.1
18.3 | 91
70
91
101 | 8.5
6.0
9.6
10.2 | 256
271 | 2.3
2.4
3.6
1.0 | 113
126 | 0.6
1.0
1.3
0.6 | 325
353 | 18.1
8.6
19.5
26.3 | 198
202
201
195 | 12.3
6.1
13.9
18.6 | 27
353
22
41 | 6.5
3.5
8.8
7.2
RBED DA | 224
218
224
228 | 2.2 4
2.1 3
3.7 5
0.8 1 | 5 | 6.9
3.4
6.9
10.4 | 99
106
98
97 | 2.6
5.6 | 268
266
261
272 | 2.4
1.1
3.0
3.0 | 91 | 0.6 | 268
269
279
244 | | Year
Winter
Equinox
Summer | 20.6
18.4
21.6
28.6 | 85
46
83
120 | 12.5
7.0
16.3
16.1 | 239
289 | 1.1
1.7
4.2
3.1 | 151
93 | 1.1
2.0
1.8
4.9 | | 25.1
21.2
33.5
29.0 | 256
247 | 13.0
10.8
14.4
15.8 | 11
351
1
33 | 6. 2
3. 9
8. 3
7. 1 | 190
197 | 2.5 6
2.6 4
4.1 7
1.2 6 | 2
8 | 23.8
17.9
35.1
19.1 | 177
187 | 11.0
6.0
16.0
11.4 | 271
281 | 3.1
1.6
4.2
3.5 | 79
61 | 1.3
2.0 | 237
254
223
237 | | | | TABLE | Е Х | RANGE O | F MEAI | N DIURN | IAL INEQ | UALIT | IES FOR | THE MO | NTHS, | YEAR A | ND SEA | sons (| OF 1947 | , | | | |----------------------|----------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------|--------|--------------|--------|--------|--------------|-------|---------------|---------------| | Month | A | ll Day | s | Qu | iet Da | .ys | Dist | turbed | Days | | All Da | ys | Qı | iet Da | ays | Dis | turbed | Days | | and
Season | D | I | Н | D | I | Н | D | I | Н | х | Y | Z | х | Y | Z | Х | Y | Z | | | , | , | Y | , | , | Y | , | , | Υ | Υ | Υ | Υ | Υ | Υ | Y | Y | Y | Υ | | January
February | 5. 58
9. 31 | 1.76
2.48 | 27.4
40.8 | 3.98
9.32 | 1.20
2.50 | 21.2 | 8.88
16.12 | 3.50 | 44.8 | 28.7 | 28. 2 | | 22.0 | 20.0 | 11.4 | 47.6 | 47.3 | 40.2 | | March | 12.35 | 3.03 | 45.3 | 13.10 | 2.65 | 42.0
44.6 | 18.70 | 4.69
7.53 | 62.2
84.4 | 45.1 | 48.5 | 19.8
39.4 | 42.5 | 50.4 | 14.2
20.4 | 68.8 | 82.9
100.2 | 45.6
107.0 | | April | 15. 23 | 2.50 | 51.1 | 15.02 | 2.65 | 47.0 | 16.12 | 3.12 | 65.6 | 52.9 | 79.4 | 36.9 | 49.3 | 79.1 | 28.4 | 66.6 | 83.8 | 47.8 | | May | 15.45 | 2.18 | 44.5 | 15.10 | 2.15 | 38.4 | 16.52 | 3.11 | 56.4 | 49.0 | 81.3 | 45.1 | 40.2 | 80.3 | 41.2 | 60.9 | 90.1 | 42.6 | | June | 15.12 | 3.04 | 56.5 | 15.76 | 2.61 | 47.6 | 14.84 | 4.23 | 75.0 | 55.7 | 80.7 | 43.0 | 49.6 | 83.3 | 31.4 | 72.0 | 76.9 | 59.6 | | July | 14.66 | 3.15 | 62.5 | 14.96 | 2.24 | 43.0 | 15.92 | 6.07 | 112.0 | 62.2 | 78.5 | 41.5 | 42.8 | 80.7 | 33.8 | 106.6 | 83.9 | 54.6 | | August | 14.89 | 3.30 | 61.6 | 16.00 | 3.23 | 57.6 | 16.00 | 5.66 | 93.8 | 60.3 | 78.0 | 42.6 | 57.9 | 84.8 | 34.6 | 89.6 | 90.4 | 64.0 | | September
October | 13.80 | 3.51 | 54.3 | 15.26 | 2.71 | 49.8 | 17.90 | 6.34 | 85.4 | 58.6 | 72.6 | 44.2 | 50.7 | 82.3 | 26.2 | 89.8 | 90.6 | 123.0 | | November | 11.70 | 3.22 | 50.4 | 9.46 | 2.47 | 41.4 | 18.30 | 5.24
 71.6 | 53.9 | 60.1 | 31.2 | 40.2 | 50.6 | 17.0 | 82.7 | 91.0 | 75.0 | | December | 7.55
6.58 | 1.75
1.58 | 27.4
19.5 | 5.80
4.38 | 1.64 | 27.2
11.8 | 14.02
9.90 | 4.14 | 44.6 | 31.7 | 37.2 | 17.5 | 30.7 | 30.3 | 9.2 | 49.8 | 71.2 | 56.2 | | 200011001 | 0.76 | 1. 70 | 19.) | 4.50 | 0.79 | 11.0 | 9.90 | 3.05 | 37.0 | 22.5 | 33.6 | 15.8 | 13.7 | 22.7 | 13.4 | 39.6 | 49.8 | 29.2 | | Mean for
Year | 11.85 | 2.63 | 45.1 | 11.51 | 2.24 | 39.3 | 15.27 | 4.72 | 69.4 | 47.5 | 61.8 | 32.5 | 40.3 | 61.1 | 23.4 | 71.4 | 79.8 | 62.1 | | Winter | 7.26 | 1.89 | 28.8 | 5.87 | 1.53 | 25.6 | 12.23 | 3.85 | 47.2 | 32.0 | 36.9 | 16.7 | 27.2 | 30.9 | 12.1 | 51.5 | 62.8 | 42.8 | | Equinox | 13.27 | 3.07 | 50.3 | 13.21 | 2.62 | 45.7 | 17.76 | 5.56 | 76.8 | 53.7 | 69.0 | 37.9 | 46.1 | 70.1 | 23.0 | 80.4 | 91.4 | 88. 2 | | Summer | 15.03 | 2.92 | 56.3 | 15.46 | 2.56 | 46.7 | 15.82 | 4.77 | 84.3 | 56.8 | 79.6 | 43.1 | 47.6 | 82.3 | 35.3 | 82.3 | 85.3 | 55.2 | | TABLE | XI. | - | NON-CYCLIC | CHANGE | (24 ^h | minus | o ^h) | |-------|-----|---|------------|--------|------------------|-------|------------------| |-------|-----|---|------------|--------|------------------|-------|------------------| | | | All Days | | | Quiet Days | | | Disturbed Days | | |---------------|---------------------|-------------------------|-----------------------|---------------------|-------------------------|-----------------------|---------------------|-------------------------|-----------------------| | Month
1947 | Declination
West | Horizontal
Intensity | Vertical
Intensity | Declination
West | Horizontal
Intensity | Vertical
Intensity | Declination
West | Horizontal
Intensity | Vertical
Intensity | | | , | Y | Y | , | Υ | Υ | , | Y | Y | | January | -0.16 | -0.1 | +0.0 | 0.00 | +0.4 | ~0.8 | -0.78 | -12.6 | - 7.8 | | February | +0.07 | +0.1 | 0.0 | +0.12 | +1.4 | -1.8 | -2.50 | - 9.0 | - 1.4 | | March | +0.02 | 70.6 | +0.7 | +0.42 | +4.4 | ~2.6 | -3.06 | -64.0 | - 4.0 | | April | -0.00 | +0.8 | -0.5 | -0. 06 | +7.8 | -4.6 | +1.00 | - 8.8 | + 8.6 | | May | +0.09 | +0.7 | -0,2 | -0.70 | +3.0 | -1.8 | +0.16 | - 9.2 | + 3.2 | | June | -0.05 | ~0.2 | +0.3 | +0.30 | +9.8 | ~3.6 | -0.74 | -25.4 | +12.4 | | July | -0.16 | -0.5 | 0.0 | +0.04 | +5.0 | -1.4 | +0.08 | - 8.4 | + 3.4 | | August | -0.05 | -0.2 | +0.3 | -0.10 | +1.4 | -0.2 | +0.50 | - 1.0 | - 1.8 | | September | -0.12 | -0.2 | +0.4 | +0.06 | +7.4 | -5.4 | +1.02 | -16.4 | + 1.4 | | October | +0.09 | +0.2 | -0.4 | +0.16 | +2.2 | -1.6 | -0.42 | - 5.2 | -14.6 | | November | +0.00 | -0.1 | +0.1 | -1.52 | +4.6 | ~2.0 | +0.18 | -10.8 | + 3.4 | | December | +0.00 | +0.3 | -0.3 | +0.16 | +4.0 | -2.4 | +1.30 | - 2.8 | + 2.6 | | Year 1947 | _ | | | -0.09 | +4.3 | -2.4 | -0.27 | -14.5 | + 0.5 | TABLE XII. - MEAN MONTHLY AND ANNUAL VALUES OF GEO-MAGNETIC ELEMENTS AT THE ABINGER MAGNETIC STATION | Month | Declination | | | | Intensity | | | |-----------|-------------|-------------|------------|---------|-----------|----------|---------| | 1947 | West | Inclination | Horizontal | North | West | Vertical | Total | | | 0 / | o , | c.g.s. | c.g.s. | c.g.s. | c.g.s. | c.g.s. | | January | 9 46.6 | 66 45.4 | .18572 | .18302 | .03154 | . 43240 | .47059 | | February | 9 46.0 | 66 45.2 | .18573 | . 18304 | .03154 | .43238 | . 47058 | | March | 9 45.0 | 66 46.7 | . 18557 | . 18289 | . 03153 | . 43254 | . 47067 | | April | 9 44.5 | 66 45.0 | .18579 | . 18311 | . 03153 | . 43244 | .47066 | | May | 9 44.2 | 66 44.1 | .18590 | . 18323 | .03153 | . 43238 | . 47065 | | June | 9 43.7 | 66 44.1 | . 18591 | . 18324 | .03153 | .43241 | . 47068 | | July | 9 43.0 | 66 43.9 | . 18594 | . 18327 | .03153 | . 43239 | . 47067 | | August | 9 42.4 | 66 45.1 | . 18577 | . 18311 | . 03152 | . 43243 | . 47065 | | September | 9 41.0 | 66 46.3 | .18564 | . 18300 | .03151 | . 43254 | . 47069 | | October | 9 40.5 | 66 46.2 | . 18567 | .18303 | .03151 | . 43256 | .47072 | | November | 9 40.2 | 66 45.3 | . 18578 | . 18314 | .03151 | . 43253 | . 47074 | | December | 9 39.9 | 66 44.6 | . 18587 | .18323 | .03151 | .43248 | . 47073 | | Year 1947 | 9 43.1 | 66 45.2 | . 18577 | .18310 | .03152 | .43246 | . 47067 | | Day | January | February | March | April | May | June | July | August | September | October | November | Decembe | |-----|---------|----------|--------|--------|--------|--------|-----------------------|--------|-----------|---------|----------|---------| | | o , | 0 / | 0 / | 0 / | 0 / | 0 / | 0 / | 0 / | o , | 0 / | 0 / | 0 1 | | 1 | 9 19.5 | 9 19.7 | 9 19.5 | 9 19.6 | 9 19.7 | 9 19.6 | 9 19.7 | 9 19.3 | 9 19.3 | 9 19.4 | 9 19.2 | 9 19. | | 2 | 19.6 | 19.6 | 19.6 | 19.6 | 19.7 | 19.6 | 19.8 | 19.3 | 19.3 | 19.4 | 19.3 | 19. | | 3 | 19.5 | 19.6 | 19.6 | 19.6 | 19.7 | 19.6 | 19.8 | 19.3 | 19.3 | 19.3 | 19.3 | 19. | | 4 | 19.5 | 19.6 | 19.6 | 19.6 | 19.7 | 19.5 | $\frac{19.7}{20.3}$ } | 19.3 | 19.3 | 19.3 | 19.2 | 19. | | 5 | 19.6 | 19.6 | 19.7 | 19.6 | 19.7 | 19.6 | 20.3 | 19.3 | 19.4 | 19.4 | 19.3 | 19. | | 6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.7 | 19.7 | 20.2 | 19.3 | 19.4 | 19.3 | 19.3 | 19. | | 7 | 19.7 | 19.6 | 19.6 | 19.5 | 19.7 | 19.6 | 20.3 | 19.5 | 19.3 | 19.3 | 19.3 | 19. | | 8 | 19.6 | 19.6 | 19.7 | 19.6 | 19.6 | 19.7 | 20.3 | 19.5 | 19.4 | 19.3 | 19.3 | 19. | | 9 | 19.6 | 19.6 | 19.6 | 19.6 | 19.7 | 19.6 | 20.6 | 19.5 | 19.4 | 19.3 | 19.3 | 19. | | 10 | 19.5 | 19.6 | 19.6 | 19.5 | 19.7 | 19.7 | $\frac{20.6}{20.1}$ } | 19.5 | 19.3 | 19.4 | 19.3 | 19. | | 11 | 19.5 | 19.6 | 19.6 | 19.7 | 19.7 | 19.8 | $\frac{19.6}{20.6}$ | 19.4 | 19.3 | 19.3 | 19.3 | 19. | | 12 | 19.5 | 19.7 | 19.6 | 19.6 | 19.7 | 19.8 | $\frac{20.1}{19.8}$ | 19.4 | 19.4 | 19.3 | 19.3 | 19. | | 13 | 19.5 | 19.7 | 19.6 | 19.6 | 19.7 | 19.7 | 19.8 | 19.4 | 19.3 | 19.3 | 19.2 | 19. | | 14 | 19.5 | 19.7 | 19.6 | 19.7 | 19.8 | 19.7 | 19.8 | 19.4 | 19.3 | 19.3 | 19.4 | 19. | | 15 | 19.5 | 19.7 | 19.5 | 19.7 | 19.7 | 19.7 | 19.8 | 19.4 | 19.4 | 19.2 | 19.4 | 19. | | 16 | 19.5 | 19.7 | 19.5 | 19.7 | 19.6 | 19.7 | 19.7 | 19.4 | 19.3 | 19.4 | 19.3 | 19. | | 17 | 19.5 | 19.6 | 19.6 | 19.6 | 19.7 | 19.7 | 19.6 | 19.4 | 19.2 | 19.3 | 19.4 | 19. | | 18 | 19.5 | 19.6 | 19.6 | 19.8 | 19.7 | 19.7 | 19.5 | 19.4 | 19.3 | 19.3 | 19.4 | 19. | | 19 | 19.4 | 19.7 | 19.6 | 19.7 | 19.7 | 19.7 | 19.6 | 19.4 | 19.3 | 19.4 | 19.4 | 19. | | 20 | 19.6 | 19.6 | 19.6 | 19.7 | 19.7 | 19.7 | 19.6 | 19.4 | 19.3 | 19.3 | 19.3 | 19. | | 21 | 19.5 | 19.6 | 19.6 | 19.7 | 19.6 | 19.8 | 19.6 | 19.4 | 19.3 | 19.3 | 19.2 | 19. | | 22 | 19.6 | 19.6 | 19.5 | 19.7 | 19.8 | 19.7 | 19.6 | 19.4 | 19.3 | 19.3 | 19.2 | 19. | | 23 | 19.5 | 19.6 | 19.6 | 19.7 | 19.8 | 19.7 | 19.6 | 19.3 | 19.3 | 19.3 | 19.3 | 19. | | 24 | 19.7 | 19.6 | 19.6 | 19.7 | 19.7 | 19.7 | 19.6 | 19.4 | 19.3 | 19.3 | 19.3 | 19. | | 25 | 19.6 | 19.6 | 19.6 | 19.7 | 19.7 | 19.7 | 19.6 | 19.3 | 19.3 | 19.3 | 19.5 | 19. | | 26 | 19.6 | 19.5 | 19.6 | 19.8 | 19.7 | 19.7 | 19.6 | 19.4 | 19.3 | 19.3 | 19.6 | 19. | | 27 | 19.7 | 19.6 | 19.6 | 19.8 | 19.7 | 19.7 | 19.6 | 19.4 | 19.3 | 19.3 | 19.6 | 19. | | 28 | 19.6 | 19.6 | 19.7 | 19.8 | 19.6 | 19.7 | 19.4 | 19.2 | 19.3 | 19.3 | 19.8 | 19. | | 29 | 19.7 | | 19.6 | 19.7 | 19.7 | 19.7 | 19.4 | 19.3 | 19.3 | 19.3 | 19.8 | 19. | | 30 | 19.6 | | 19.6 | 19.7 | 19.5 | 19.7 | 19.3 | 19.3 | 19.3 | 19.3 | 19.7 | 19. | | 31 | 19.7 | | 19.6 | | 19.7 | | 19.3 | 19.3 | | 19.2 | | 19. | Apr.10 - Recording-Room temperature raised from 11.0 C to 16.0 C. May 30 - " " " " " " 16.0 C " 21.0 C. July 4-12 -Unit containing magnet being installed by Time Department near Recording-Room. Unit removed on July 12, after discovery and tests by Magnetic Department. Smaller changes of Base-line value were traced to Chronograph magnets in another Time Dept. building. Such magnets were eventually replaced by relays on Aug. 27. Nov. 4 - Recording-Room temperature lowered from 21.0 C to 16.0 C. TABLE XIV. - RESULTS OF THE DETERMINATIONS OF THE ABSOLUTE VALUE OF HORIZONTAL INTENSITY FROM OBSERVATIONS MADE WITH THE SCHUSTER-SMITH COIL MAGNETOMETER IN THE MAGNETIC PAVILION AT ABINGER, WITH THE DEDUCED VALUES OF THE BASE-LINE OF THE HORIZONTAL INTENSITY MAGNETOGRAMS | Universal Time | No.
of
Obs. | Observed
Horizontal
Intensity | Deduced
Value of
Base-line | Unive | ersal Time | No.
of
Obs. | Observed
Horizontal
Intensity | Deduced
Value of
Base-line | Universal Time | No.
of
Obs. | Observed
Horizontal
Intensity | Deduced
Value of
Base-line | |--|---------------------------------|--|--|---|---|---------------------------------|---|---
--|---------------------------------------|---|---| | h m h m | 1 | Y | Υ | | h m h m | | Y | Y | hm hr | 1 | Υ | Υ | | Jan. 1 10 4 - 10 16 2 10 46 - 10 53 3 10 37 - 10 45 4 10 38 - 10 45 6 10 20 - 10 28 7 10 42 - 10 49 8 10 42 - 10 49 10 10 34 - 10 52 11 10 33 - 10 42 | 8
8
8
8
8 | 18583
18573
18563
18558
18548
18552
18574
18579
18585 | 18348
18347
18347
18346
18346
18348
18347 | Mar. 24
25
26
27
28
29
31 | 9 42 - 9 51
9 44 - 9 52
9 46 - 9 54
9 54 - 10 19
9 22 - 9 30
9 21 - 9 29
9 52 - 10 16 | 8
8
8
8
8 | 18532
18532
18543
18544
18529
18523
18535 | 18345
18345
18345
18345
18345
18344
18345 | June 10 8 11 - 8 23 11 8 23 - 8 32 12 8 10 - 8 18 13 8 7 - 8 16 14 8 17 - 8 30 16 8 15 - 8 24 17 8 17 - 8 25 18 8 14 - 8 23 19 8 4 - 8 14 | 8
8
8
8
8
8
8 | 18568
18565
18593
18577
18541
18577
18559
18581
18566 | 18342
18343
18342
18342
18342
18342
18342
18342 | | 13 10 54 - 11 7 15 9 52 - 9 59 16 10 46 - 10 57 17 10 41 - 10 57 18 10 47 - 10 55 20 10 41 - 10 49 22 10 6 - 10 14 23 9 58 - 10 10 24 10 36 - 10 46 25 10 45 - 10 56 | 8
8
8
8
8
8
8 | 18569
18568
18564
18536
18551
18563
18573
18579
18550
18479 | 18348
18347
18346
18347
18347
18348
18347
18346 | Apr. 1
2
3
5
8
9
11
12
14 | 9 51 - 9 59
9 12 - 9 24
9 6 - 9 14
9 35 - 9 43
9 13 - 9 21
9 47 - 9 58
9 40 - 9 48
8 44 - 8 55
8 51 - 8 58
8 48 - 8 56 | 8
8
8
8
8
8
8 | 18544
18574
18564
18567
18501
18544
18555
18584
18575 | 18345
18346
18345
18345
18346
18344
18345
18345
18345 | 20 8 23 - 8 35
21 8 0 - 8 5
23 7 45 - 8 1
24 8 8 - 8 21
25 8 11 - 8 25
26 8 5 - 8 15
27 8 13 - 8 25
28 8 1 - 8 14
30 8 3 - 8 17 | 8 8 8 8 8 8 8 8 8 | 18560
18568
18595
18578
18562
18593
18580
18586 | 18341
18341
18341
18342
18341
18341
18342
18341
18341 | | 27 10 47 - 10 57 28 10 43 - 10 55 29 10 41 - 10 53 30 10 43 - 10 58 31 10 42 - 10 54 Feb. 1 10 46 - 10 54 | 8
8
8
8
8 | 18535
18547
18538
18573
18554 | 18347
18347
18346
18348
18347 | 16
17
18
19
21
22
23
24 | 8 8 - 8 22
6 51 - 7 3
7 40 - 7 54
7 42 - 7 57
8 10 - 8 22
7 29 - 7 41
8 20 - 8 32
8 32 - 8 43 | 8
8
8
8
8
8 | 18574
18591
18526
18538
18559
18582
18579
18583 | 18345
18345
18345
18345
18344
18345
18346 | July 1 8 7 - 8 18 2 8 17 - 8 29 3 8 13 - 8 21 4 7 54 - 8 29 5 8 35 - 8 46 7 8 38 - 8 49 8 9 31 - 9 39 | 8
8
16
8
8
8
8
8 | 18588
18568
18565
18582
18579
18583
18581 | 18341
18341
18341
18341
18341
18340
18340 | | 3 10 52 - 11 7
4 10 46 - 10 53
5 10 41 - 10 49
6 9 52 - 10 4
7 9 53 - 10 5
8 9 46 - 9 55
10 9 49 - 9 57
11 9 45 - 9 53 | | 18554
18567
18566
18571
18581
18561
18556
18551 | 18347
18346
18347
18346
18347
18347
18347 | 25
26
28
29
30
May 1 | 7 30 - 7 49
8 48 - 9 8
8 39 - 8 47
8 1 - 8 10
8 7 - 8 15
8 6 - 8 14 | 8
8
8
8 | 18606
18606
18583
18597
18585 | 18347
18347
18346
18347
18347 | 9 9 27 - 9 36
10 9 30 - 9 39
11 8 41 - 8 49
14 9 25 - 9 49
15 8 27 - 8 35
16 9 26 - 9 38
17 8 27 - 8 42
18 8 13 - 8 26 | 8 8 8 8 8 8 10 | 18566
18566
18590
18582
18573
18569
18580
18551 | 18340
18339
18340
18339
18338
18339
18340
18339 | | 12 9 51 - 9 59 13 9 51 - 9 58 14 9 45 - 9 54 15 9 52 - 9 59 17 9 52 - 10 5 18 10 8 - 10 22 19 9 40 - 9 49 20 9 55 - 10 9 21 11 3 - 11 14 | 8
8
8
8
8
8 | 18563
18560
18576
18563
18506
18534
18556
18548
18539 | 18348
18347
18348
18347
18345
18346
18346
18347 | 2
3
5
6
7
8
9
10 | 9 55 - 10 8
8 12 - 8 20
8 19 - 8 27
8 22 - 8 30
8 8 - 8 19
8 1 - 8 13
8 17 - 8 25
8 18 - 8 25
8 19 - 8 26 | 8
8
8
8
8
8
8 | 18573
18580
18577
18580
18582
18588
18574
18577 | 18345
18347
18346
18345
18345
18344
18345
18343 | 19 8 26 - 8 37
21 8 20 - 8 32
23 9 41 - 9 52
24 8 16 - 8 28
25 8 12 - 8 26
26 8 33 - 8 42
28 8 19 - 8 28
29 8 22 - 8 36
30 8 16 - 8 23 | 8 8 8 8 8 8 8 8 8 8 | 18537
18561
18539
18575
18562
18589
18569
18565
18577 | 18339
18339
18339
18339
18339
18339
18339 | | 22 10 13 - 10 25
24 10 4 - 10 16
25 9 56 - 10 12
26 9 53 - 10 8
27 10 5 - 10 17
28 10 5 - 10 16 | 8
8
8
8 | 18571
18574
18572
18576
18567
18576 | 18346
18348
18346
18347
18347 | 13
14
15
16
17
19
20
21 | 8 27 - 8 35
8 19 - 8 27
8 13 - 8 21
8 16 - 8 26
8 9 - 8 18
8 29 - 8 36
8 14 - 8 22
8 22 - 8 30 | 8
8
8
8
8
8 | 18593
18567
18580
18555
18571
18546
18553
18575 | 18345
18344
18344
18344
18344
18344
18344 | Aug. 1 8 5 - 8 19 2 8 13 - 8 29 5 8 19 - 8 29 6 8 23 - 8 30 7 9 21 - 9 29 6 8 20 - 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 6 8 20 7 9 21 - 9 20 7 9 2 | 8 8 8 8 8 8 8 | 18573
18574
18578
18578
18592
18551 | 18339
18338
18338
18338
18338 | | Mar. 1 10 6 - 10 18 3 9 44 - 9 53 4 9 55 - 10 14 5 10 16 - 10 34 6 10 4 - 10 16 7 9 54 - 10 10 8 10 4 - 10 16 10 11 4 - 11 18 11 10 45 - 10 54 | 8
8
8
8
8 | 18564
18425
18480
18538
18546
18541
18509
18513
18533 | 18347
18346
18346
18346
18346
18345
18345 |
22
23
24
27
28
29
31 | 8 37 - 8 11
8 37 - 8 45
7 54 - 8 3
8 0 - 8 8
9 28 - 9 41
7 35 - 7 48
7 57 - 8 6 | 8
8
8
8
8
8 | 18581
18600
18511
18575
18563
18607
18577 | 18344
18345
18344
18343
18344
18344 | 8 8 19 - 8 25
9 8 16 - 8 25
11 9 28 - 9 36
12 9 5 - 9 15
13 8 32 - 8 46
14 9 3 - 9 15
15 9 7 - 9 18
16 8 32 - 8 46
18 9 18 - 9 25 | 8 8 8 4 4 8 8 8 8 8 8 | 18577
18591
18555
18539
18555
18565
18561
18494
18468 | 18338
18337
18337
18337
18336
18336
18336
18335
18335 | | 11 10 45 10 34 12 10 20 - 10 34 13 9 45 - 10 11 14 9 53 - 10 8 15 10 14 - 10 25 17 9 1 - 9 9 21 9 30 - 9 43 22 10 27 - 10 35 | 8
8
8
8
8 | 18552
18562
18563
18467
18519
18555
18551 | 18348
18347
18347
18346
18346
18344 | June 2
3
4
5
6
7
9 | 8 0 - 8 10
8 22 - 8 35
8 1 - 8 14
8 36 - 8 44
8 21 - 8 32
8 11 - 8 22
8 12 - 8 21 | 8
8
8
8
8 | 18555
18572
18575
18576
18546
18554
18566 | 18342
18341
18341
18342
18341
18341 | 19 9 13 - 9 20
20 9 32 - 9 40
21 9 28 - 9 35
22 8 49 - 8 50
23 8 50 - 8 50
25 9 21 - 9 30
26 9 12 - 9 20 | 8 8 8 8 8 8 8 8 | 18549
18514
18531
18555
18520
18511
18544 | 18335
18335
18335
18335
18336
18335 | Apr. 10 - Recording-Room temperature raised from 11.0 C to 16.0 C. May 30 - Recording-Room temperature raised from 16.0 C to 21.0 C. TABLE XIV. - RESULTS OF THE DETERMINATIONS OF THE ABSOLUTE VALUE OF HORIZONTAL INTENSITY FROM OBSERVATIONS MADE WITH THE SCHUSTER-SMITH COIL MAGNETOMETER IN THE MAGNETIC PAVILION AT ABINGER, WITH THE DEDUCED VALUES OF THE BASE-LINE OF THE HORIZONTAL INTENSITY MAGNETOGRAMS | Unive | ersal Time | No.
of
Obs. | Observed
Horizontal
Intensity | Deduced
Value of
Base-line | Univ | ersal Time | No.
of
Obs. | Observed
Horizontal
Intensity | Deduced
Value of
Base-11ne | Uni | versal Time | No.
of
Obs. | Observed
Horizontal
Intensity | Deduced
Value of
Base-line | |---------|---------------|-------------------|-------------------------------------|----------------------------------|----------|---------------|-------------------|-------------------------------------|----------------------------------|----------|--------------------------------|-------------------|-------------------------------------|----------------------------------| | | h m h m | | Υ | Y | | h m h m | | Υ | Y | | h m h m | | Y | Y | | Aug. 27 | 9 33 - 9 44 | 8 | 18563 | 18335 | Oct. 4 | 9 18 - 9 28 | 8 | 18531 | 18337 | Nov. 15 | 11 33 - 11 42 | 8 | 18555 | 18334 | | 28 | 8 47 - 8 57 | 8 | 18581 | 18338 | 6 | 9 20 - 9 32 | 8 | 18539 | 18336 | 17 | 10 8 - 10 17 | 8 | 18563 | 18335 | | 29 | 9 19 - 9 27 | 8 | 18552 | 18335 | 7 | 9 27 - 9 35 | 8 | 18552 | 18335 | 19 | 11 38 - 11 52 | 8 | 18536 | 18334 | | 30 | 9 28 - 9 36 | 8 | 18552 | 18336 | 8 | 10 27 - 10 37 | 8 | 18559 | 18335 | 21 | 11 31 - 11 40 | 8 | 18566 | 18334 | | | | | | | 9 | 8 17 - 8 29 | 8 | 18579 | 18337 | 22 | 11 28 - 11 36 | 8 | 18562 | 18335 | | | | | | | 10 | 9 19 - 9 32 | 8 | 18511 | 18336 | 24 | 10 22 - 10 32 | 8 | 18588 | 18337 | | Sept. 1 | 9 13 - 9 22 | 8 | 18552 | 18336 | 11 | 10 19 - 10 30 | 8 | 18525 | 18335 | 25 | 10 28 - 10 36 | 8 | 18568 | 18336 | | 2 | 8 43 - 8 55 | 8 | 18541 | 18336 | 13 | 9 16 - 9 24 | 8 | 18547 | 18337 | 26 | 10 28 - 10 36 | 8 | 18593 | 18337 | | 4 | 9 7 - 9 16 | 8 | 18499 | 18336 | 14 | 15 21 - 15 30 | 8 | 18522 | 18335 | 27 | 10 19 - 10 33 | 8 | 18586 | 18338 | | 5 | 9 11 - 9 20 | 8 | 18524 | 18336 | 15 | 8 53 - 9 5 | 8 | 18557 | 18336 | 28 | 18 50 - 18 54 | 4 | 18601 | 18338 | | 6 | 8 41 - 8 51 | 8 | 18547 | 18336 | 16 | 9 6 - 9 21 | 8 | 18554 | 18335 | | | | | | | 8 | 9 7 - 9 15 | 8 | 18581 | 18336 | 17 | 9 21 - 9 32 | 8 | 18540 | 18336 | | | | | | | 9 | 9 19 - 9 29 | 8 | 18561 | 18336 | 18 | 9 22 - 9 34 | 8 | 18541 | 18336 | Dec. 1 | 11 31 - 11 40 | 8 | 18588 | 18338 | | 11 | 9 16 - 9 24 | 8 | 18568 | 18336 | 20 | 9 11 - 9 25 | 8 | 18543 | 18337 | 2 | 10 18 - 10 28 | 8 | 18582 | 18337 | | 12 | 9 16 - 9 24 | 8 | 18548 | 18336 | 21 | 7 45 - 7 57 | 8 | 18562 | 18337 | 3 | 11 45 - 12 1 | 8 | 18585 | 18337 | | 13 | 9 18 - 9 27 | 8 | 18494 | 18336 | 22 | 9 7 - 9 20 | 8 | 18562 | 18336 | 4 | 10 24 - 10 34 | 8 | 18599 | 18338 | | 15 | 9 31 - 9 39 | 8 | 18508 | 18337 | 23 | 9 2 - 9 16 | 8 | 18565 | 18335 | 5 | 12 35 - 12 52 | 8 | 18584 | 18336 | | 16 | 9 20 - 9 32 | 8 | 18550 | 18335 | 24 | 8 33 - 8 45 | 8 | 18571 | 18336 | 6 | 11 33 - 11 45 | 8 | 18565 | 18336 | | 17 | 9 22 - 9 34 | 8 | 18536 | 18336 | 25 | 10 27 - 10 43 | 8 | 18557 | 18335 | 9 | 10 31 - 10 40 | 8 | 18566 | 18337 | | 18 | 9 17 - 9 31 | 8 | 18524 | 18335 | 27 | 10 30 - 10 39 | 8 | 18560 | 18336 | 10 | 10 33 - 10 45 | 8 | 18551 | 18336 | | 19 | 9 23 - 9 34 | 8 | 18532 | 18336 | 28 | 10 29 - 10 44 | 8 | 18566 | 18336 | 11 | 10 23 - 10 34 | 8 | 18573 | 18336 | | 20 | 9 17 - 9 27 | 8 | 18556 | 18337 | 29 | 10 30 - 10 39 | 8 | 18569 | 18335 | 12 | 11 45 - 12 0 | 8 | 18563 | 18336 | | 22 | 9 26 - 9 33 | 8 | 18523 | 18335 | 30 | 9 11 - 9 21 | 8 | 18588 | 18336 | 13 | 11 0 - 11 23 | 8 | 18559 | 18336 | | 23 | 9 13 - 9 22 | 8 | 18537 | 18335 | 31 | 10 23 - 10 31 | 8 | 18578 | 18336 | 15 | 10 8 - 10 22 | 8 | 18581 | 18336 | | 24 | 9 14 - 9 26 | 8 | 18542 | 18336 | | | | | | 16 | 10 16 - 10 24 | 8 | 18572 | 18336 | | 25 | 10 30 - 10 41 | 8 | 18507 | 18336 | Nov. | | _ | | 1000 | 17 | 11 35 - 11 48 | . 8 | 18582 | 18337 | | 26 | 10 28 - 10 41 | 8 | 18517 | 18336 | | 10 24 - 10 32 | 8 | 18571 | 18335 | 18 | 15 7 - 15 46 | 9 | 18589 | 18336 | | 27 | 9 19 - 9 27 | 8 | 18547 | 18335 | 3 | 11 25 - 11 34 | 8 | 18566 | 18336 | 20 | 10 23 - 10 32 | 8 | 18590 | 18337 | | 29 | 11 21 - 11 42 | 8 | 18543 | 18335 | - | 11 27 - 11 35 | 8 | 18558 | 18334 | 22 | 10 25 - 10 38 | 8 | 18598 | 18335 | | 30 | 11 3 - 11 24 | 8 | 18537 | 18336 | | 11 34 - 11 48 | 8 | 18574 | 18334 | 23 | 10 2 - 10 11 | - 8
8 | 18602 | 18336 | | | | | | | • | 11 25 - 11 33 | 8 | 18594 | 18336 | 24 | , , - , | • | 18597 | 18337 | | Oct. 1 | 9 37 - 9 51 | 8 | 18551 | 18337 | 8 | 9 54 - 10 5 | 8 | 18568 | 18336 | 26 | 10 36 - 10 48
10 25 - 10 34 | 8
8 | 18599
18588 | 18336 | | 2 | 9 19 - 9 28 | 8 | 18498 | 18335 | | 11 25 - 11 34 | 8 | 18531 | 18334 | 29 | | 8
8 | 18588 | 18336 | | 2 | 9 19 9 28 | 8 | 18494 | 18337 | 11
12 | 10 24 - 10 32 | 8
8 | 18568 | 18335 | 30
31 | | 8
8 | 18582 | 18338 | | , | 91) 921 | 0 | 10474 | 10337 | 12 | 11 24 - 11 35 | ď | 18544 | 18334 | 31 | 10 30 - 10 40 | 8 | 10)90 | 18338 | Nov. 4 - Recording-Room temperature lowered from 21.0 C to 16.0 C. TABLE XV. - RESULTS OF THE DETERMINATIONS OF THE ABSOLUTE VALUE OF VERTICAL INTENSITY FROM OBSERVATIONS MADE WITH THE DYE COIL MAGNETOMETER IN THE MAGNETIC PAVILION AT ABINGER, WITH THE DEDUCED VALUES OF THE BASE-LINE OF THE VERTICAL INTENSITY MAGNETOGRAMS | | | OF THE VERTICAL INTENSITY MAGNETOGRAMS | | |--
--|--|---| | Universal Time | observed Vertical Intensity Deduced Value of Base-line | Opserved Vertical Intensity Deduced Value of Base-line | opserved vertical Intensity Deduced value of Base-line | | No mail of the color c | Y Y 8 | Mar. 21 8 59 - 9 23 8 43242 43026 22 9 46 - 10 15 8 43229 43029 24 9 18 - 9 36 8 43244 43026 25 9 20 - 9 39 8 43232 43027 26 9 18 - 9 41 8 43241 43027 27 9 24 - 9 50 8 43225 43026 28 8 56 - 9 17 8 43246 43027 31 9 16 - 9 42 8 43252 43028 Apr. 1 9 31 - 9 48 8 43244 43028 3 9 23 - 9 1 8 43242 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43231 43028 Apr. 1 9 31 - 9 48 8 43234 43029 2 8 32 - 9 1 8 43242 43028 Apr. 1 9 31 - 9 48 8 43234 43029 2 8 32 - 9 1 8 43231 43026 Apr. 1 9 31 - 9 48 8 43234 43026 Apr. 1 9 31 - 9 48 8 43234 43026 Apr. 1 9 31 - 9 48 8 43234 43027 Apr. 1 9 31 - 9 48 8 43234 43027 Apr. 1 9 31 - 9 48 8 43234 43027 Apr. 1 9 31 - 9 48 8 43234 43027 Apr. 1 9 31 - 9 48 8 43245 43028 Apr. 1 9 31 - 9 48 8 43245 43026 Apr. 1 9 31 - 9 48 8 43245 43026 Apr. 1 9 31 - 9 48 8 43245 43026 Apr. 1 9 31 - 9 48 8 43246 43027 Apr. 1 9 31 - 9 48 8 43246 43027 Apr. 1 9 31 - 9 48 8 43246 43027 Apr. 1 9 31 - 9 48 8 43246 43027 Apr. 1 9 31 - 9 48 8 43246 43027 Apr. 1 9 31 - 9 48 8 43246 43027 Apr. 1 9 31 - 9 48 43 843246 43027 Apr. 1 9 31 - 9 48 43 843246 43027 Apr. 1 9 31 - 9 48 43 843246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43027 Apr. 1 9 31 - 9 48 43246 43029 Apr. 1 9 31 - 9 48 43246 43029 Apr. 1 9 31 - 9 48 43246 43029 Apr. 1 9 31 - 9 48 43246 43029 Apr. 1 9 31 - 9 48 43246 43029 Apr. 1 9 31 - 9 48 43246 43029 Apr. 1 9 10 10 15 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10 | h m h m y y y July 9 8 11 - 8 34 8 43226 43030 10 8 11 - 8 30 8 43225 43029 11 8 19 - 8 36 8 43223 43030 14 7 45 - 8 35 8 43223 43030 15 8 2 - 8 22 8 43230 43029 16 8 22 - 8 40 8 43236 43030 17 7 50 - 8 18 8 43232 43029 18 7 37 - 8 3 8 43249 43030 19 7 55 - 8 16 8 43252 43029 21 7 50 - 8 10 8 43252 43029 21 7 50 - 8 10 8 43252 43029 21 7 50 - 8 10 8 43252 43029 23 8 4 - 8 31 8 43252 43029 23 8 4 - 8 31 8 43252 43029 25 7 47 - 8 6 8 43237 43028 26 8 10 - 8 26 8 43237 43028 26 8 10 - 8 26 8 43238 43029 27 7 57 - 8 16 8 43235 43030 30 7 45 - 8 9 8 43243 43029 29 7 53 - 8 16 8 43235 43030 30 7 45 - 8 9 8 43244 43022 29 7 55 - 8 20 8 43244 43022 31 8 7 - 8 30 8 43244 43032 Aug. 1 7 42 - 8 1 8 43227 43030 8 7 52 - 8 15 8 43233 43029 7 7 57 - 8 40 8 43227 43030 8 7 52 - 8 15 8 43233 43029 9 7 54 - 8 9 8 43235 43030 12 8 13 - 8 46 8 43208 43031 13 8 45 - 9 17 8 43225 43030 | | 5 10 20 - 10 35 6 9 19 - 9 47 7 9 29 - 9 50 8 9 20 - 9 39 10 9 26 - 9 44 11 9 19 - 9 46 12 9 29 - 9 46 13 9 31 - 9 46 14 9 23 - 9 42 15 9 34 - 9 48 17 9 31 - 9 48 18 9 39 - 9 58 19 9 19 - 9 35 20 9 30 - 9 51 21 9 45 - 10 26 22 9 40 - 9 58 24 9 39 - 9 55 25 9 37 - 9 53 26 9 30 - 9 49 27 9 36 - 9 55 28 9 41 - 9 57 Mar. 1 9 39 - 9 55 28 9 41 - 9 57 Mar. 1 9 39 - 9 57 6 9 39 - 9 55 7 9 38 - 9 57 6 9 39 - 9 55 7 9 38 - 9 51 8 9 39 - 9 56 10 9 47 - 10 35 11 9 39 - 9 57 12 9 47 - 10 11 13 9 13 - 9 35 15 9 43 - 9 59 17 8 29 - 8 53 | 8 43223 43026
8 43227 43026
8 43224 43024
8 43229 43027
8 43234 43025
8 43232 43025
8 43236 43027
8 43233 43029
8 43235 43029
8 43235 43027
8 43235 43027
8 43242 43025
8 43242 43025
8 43242 43028
8 43233 43029
8 43235 43027
8 43242 43025
8 43242 43025
8 43233 43029
8 43233 43027
8 43242 43025
8 43233 43029
8 43236 43029
8 43237 43027
8 43239 43027
8 43239 43025
8 43249 43025
8 43249 43025
8 43249 43026
8 43249 43026
8 43253 43026 | May 1 7 48 - 8 3 8 43235 43024 2 8 19 - 8 32 8 43242 43028 3 7 47 - 8 6 8 43236 43027 May 1 7 48 - 8 3 8 43242 43028 3 7 47 - 8 6 8 43236 43028 5 7 50 - 8 15 8 43231 43027 6 8 0 - 8 18 8 43234 43029 7 7 38 - 8 2 8 43238 43027 8 7 26 - 7 56 8 43235 43027 9 7 52 - 8 11 8 43236 43028 10 7 59 - 8 14 8 43236 43028 10 7 59 - 8 14 8 43237 43026 12 7 56 - 8 15 8 43239 43028 13 8 5 - 8 23 8 43225 43027 15 7 50 - 8 8 8 43233 43027 16 7 53 - 8 12 8 43233 43027 16 7 53 - 8 12 8 43232 43028 17 7 49 - 8 5 8 43237 43026 17 7 49 - 8 5 8 43237 43026 20 7 54 - 8 11 8 43233 43027 19 8 8 - 8 26 8 43237 43028 21 7 51 - 8 19 8 43233 43027 22 7 41 - 7 57 8 43244 43029 23 8 13 - 8 33 8 43223 43039 27 8 18 - 8 43 8 43233 43025 22 7 41 - 7 57 8 43244 43029 23 8 13 - 8 33 8 43223 43039 27 8 18 - 8 43 8 43234 43023 31 7 39 - 7 52 8 43234 43023 31 7 39 - 7 52 8 43237 43027 June 3 7 59 - 8 16 8 43231 43028 June 3 7 59 - 8 16 8 43241 43030 29 8 40 - 8 57 8 43234 43023 31 7 39 - 7 52 8 43237 43027 | 14 8 31 - 8 58 8 43231 43027 15 8 35 - 8 59 8 43232 43028 16 8 52 - 9 8 8 43235 43029 19 8 48 - 9 9 8 43235 43029 19 8 48 - 9 9 8 43244 43030 20 8 56 - 9 27 8 43246 43028 21 8 49 - 9 23 8 43245 43030 22 8 22 - 8 43 8 43246 43030 23 9 6 - 9 30 8 43239 43030 25 9 1 - 9 16 8 43240 43028 26 8 36 - 9 1 8 43240 43028 26 8 36 - 9 1 8 43240 43028 27 9 1 - 9 26 8 43241 43029 28 9 12 - 9 34 8 43238
43030 29 8 52 - 9 13 8 43236 43030 30 9 7 - 9 22 8 43247 43031 Sept. 1 8 48 - 9 9 8 43232 43028 4 8 42 - 9 0 8 43250 43028 5 8 45 - 9 6 8 43245 43029 6 8 59 - 9 20 8 43239 43028 8 8 37 - 9 1 8 43250 43028 8 8 37 - 9 1 8 43250 43028 11 8 56 - 9 14 8 43237 43029 11 8 56 - 9 14 8 43237 43028 12 8 49 - 9 9 8 43240 43027 13 8 55 - 9 11 8 43240 43027 13 8 55 - 9 11 8 43240 43027 13 8 55 - 9 11 8 43240 43027 13 8 55 - 9 11 8 43240 43027 14 8 49 - 9 9 8 43240 43027 15 8 49 - 9 9 8 43240 43027 16 8 43 - 9 12 8 43240 43027 17 8 53 - 9 14 8 43240 43027 18 8 38 - 9 9 8 43245 43030 17 8 53 - 9 14 8 43240 43027 20 8 31 - 9 8 43245 43030 19 8 48 - 9 16 8 43249 43027 20 8 31 - 9 8 8 43249 43027 22 8 56 - 9 20 8 43224 43028 23 8 48 - 9 7 8 43248 43027 24 8 36 - 9 5 8 43250 43027 25 8 44 - 9 36 8 43260 43027 25 8 44 - 9 36 8 43264 43027 | Apr.10 - Recording-Room temperature raised from 11.0 C to 16.0 C. June 6 - July 4 - Potentiometer at N.P.L. for re-measurement of current May 30 - " " 16.0 C " 21.0 C. values and fitting of new shunt to Standard Resistance. TABLE XV. - RESULTS OF THE DETERMINATIONS OF THE ABSOLUTE VALUE OF VERTICAL INTENSITY FROM OBSERVATIONS MADE WITH THE DYE COIL MAGNETOMETER IN THE MAGNETIC PAVILION AT ABINGER, WITH THE DEDUCED VALUES OF THE BASE-LINE OF THE VERTICAL INTENSITY MAGNETOGRAMS | Univ | versal Time | No.
of
Obs. | Observed
Vertical
Intensity | Deduced
Value of
Base-line | Uni | /ersal | Tin | ne | | No.
of
Obs. | Observed
Vertical
Intensity | Deduced
Value of
Base-line | Un | 11ve | ersa | 11 7 | [ime | | No.
of
Obs. | Observed
Vertical
Intensity | Deduced
Value of
Base-line | |---------|---------------|-------------------|-----------------------------------|----------------------------------|---------|--------|-----|------|----|-------------------|-----------------------------------|----------------------------------|--------|------|------|------|------|-----|-------------------|-----------------------------------|----------------------------------| | | h m h m | | Y | Υ | | h | m | h | m | | Y | Y | | | h | m | 1 | n m | | Y | Υ | | Sept.27 | 8 54 - 9 14 | 8 | 43256 | 43026 | Oct. 24 | 7 4 | 3 - | 8 2 | 25 | 8 | 43259 | 43028 | Nov. 2 | 6 | 9 | 56 | - 10 | 24 | 8 | 43250 | 43031 | | 29 | 8 49 ~ 9 10 | 8 | 43248 | 43030 | 25 | 9 | 3 - | 9 2 | 29 | 8 | 43251 | 43027 | 2 | 7 | 9 | 13 | - 10 | 7 | 8 | 43247 | 43035 | | 30 | 11 41 ~ 11 55 | 4 | 43238 | 43031 | 27 | 9 | 9 - | 9 : | 31 | 8 | 43247 | 43027 | 2 | 8 | 9 | 23 | - 10 |) 5 | 8 | 43239 | 43031 | | ł | | | | | 28 | 8 5 | 9 - | 9 2 | 28 | 8 | 43244 | 43027 | | | | | | | | | | | | | | | | 29 | 9 1 | | 9 1 | 16 | 2 | 43239 | 43026 | _ | | | | | | | | | | Oct. 1 | 8 58 ~ 9 27 | 8 | 43242 | 43029 | 30 | 8 3 | | 9 | 3 | 8 | 43244 | 43029 | | | 10 | 4 | - 10 | | 8 | 43246 | 43034 | | 2 | 8 55 ~ 9 14 | 8 | 43241 | 43026 | 31 | 9 | 3 - | 9 3 | 38 | 8 | 43246 | 43031 | | 2 | - | 44 | - 10 | | 8 | 43241 | 43029 | | 3 | 8 37 - 9 4 | 8 | 43255 | 43025 | | | | | | | | | | 3 | 10 | 9 | - 10 | - | 8 | 43243 | 43031 | | 4 | 8 40 - 9 8 | 8 | 43267 | 43027 | No. | | | _ | _ | | | | | 4 | - | 34 | - 10 | - | 8 | 43242 | 43033 | | 6 | 8 41 - 9 9 | 8 | 43258 | 43027 | Nov. 1 | 9 1 | | | 30 | 8 | 43242 | 43029 | | 5 | 10 | 4 | | 25 | 8 | 43241 | 43032 | | 7 | 9 1 - 9 22 | 8 | 43252 | 43024 | . 3 | | | | 38 | 6 | 43236 | 43028 | | 6 | | 13 | - 10 | - | 8 | 43248 | 43029 | | 8 | 9 8 ~ 9 40 | 8 | 43254 | 43029 | 5 | 9 4: | | 10 | 4 | 8 | 43239 | 43026 | | 9 | | 14 | | 26 | 8 | 43247 | 43032 | | 9 | 7 29 - 7 56 | 8 | 43247 | 43029 | 6 | 10 20 | - | 10 4 | | 8 | 43235 | 43025 | 1 | | - | ,, | | 19 | 8 | 43248 | 43032 | | 10 | 8 34 - 9 7 | 8 | 43260 | 43028 | 7 | 10 1 | | - | | 8 | 43231 | 43023 | 1 | - | - | 50 | | 12 | 8 | 43244 | 43028 | | 11 | 9 2 - 9 36 | 8 | 43251 | 43029 | 8 | 11 40 | | 12 1 | | 6 | 43246 | 43025 | 1 | - | 10 | - | | 34 | 8 | 43233 | 43026 | | 13 | 8 50 - 9 12 | 8 | 43257 | 43029 | 10 | 10 1 | - | 10 2 | | 8 | 43258 | 43027 | 1 | - | 16 | | - 16 | | 8 | 43257 | 43030 | | 14 | 14 56 - 15 16 | 8 | 43288 | 43028 | 11 | 9 5 | | 10 2 | | 8 | 43247 | 43029 | 2 | | - | 50 | | 12 | 8 | 43237 | 43030 | | 15 | 9 15 ~ 9 39 | 8 | 43258 | 43027 | 12 | 11 43 | _ | 12 4 | | 8 | 43259 | 43027 | 2 | | | 34 | | 16 | 8 | 43239 | 43034 | | 16 | 8 20 - 8 54 | 8 | 43263 | 43027 | 15 | 10 13 | - | 10 3 | | 8 | 43243 | 43027 | 2 | - | 9 | - | | 58 | 8 | 43239 | 43032 | | 17 | 8 31 - 9 8 | 8 | 43253 | 43029 | 17 | 12 30 | | 12 5 | | 6 | 43243 | 43023 | 2 | | | | - 10 | | 8 | 43248 | 43032 | | 18 | 8 44 - 9 14 | 8 | 43247 | 43028 | 19 | 9 50 | | 10 4 | - | 8 | 43250 | 43024 | 2 | | - | ,, | | 46 | 8 | 43239 | 43031 | | 20 | 8 29 ~ 9 2 | 8 | 43262 | 43029 | 21 | 10 22 | | | 38 | 8 | 43250 | 43030 | 2 | - | 9 . | | | 21 | 8 | 43238 | 43030 | | 21 | 8 38 ~ 9 10 | 8 | 43260 | 43028 | 22 | 9 5 | | | 29 | 8 | 43247 | 43026 | 3 | | 9 . | | - 10 | | 8
8 | 43234 | 43031 | | 22 | | 8 | 43256 | 43028 | 24 | 9 44 | | 10 1 | | 8
8 | 43243 | 43029 | 3 | 1 | 9 | 57 | 10 | 21 | 8 | 43236 | 43030 | | 23 | 8 18 ~ 8 47 | B | 43248 | 43026 | 25 | 9 40 |) | 10 2 | 4 | ō | 43247 | 43030 | | | | | | | | | | Nov. 4 - Recording-Room temperature lowered from 21.0 C to 16.0 C. TABLE XV(A). - DAILY VALUE OF THE BASE-LINE OF THE VERTICAL INTENSITY MAGNETOGRAMS AT THE ABINGER MAGNETIC STATION, DEDUCED FROM OBSERVATIONS OF MAGNETIC DIP MADE WITH THE EARTH INDUCTOR | | ····· | | | | | | | | | | | | |-----|----------|----------|-------|-------------|-------|-------|----------|--------|-----------|---------|----------|----------| | Day | January | February | March | April | May | June | July | August | September | October | November | December | | | Y | Y | Y | Υ | Y | Y | Y | Y | Y | Υ | Y | Y | | 1 | 43030 | 43029 | 43025 | 43020 | 43025 | _ | 43025 | 43026 | 43030 | 43029 | 43029 | 43029 | | 2 | 028 | - | _ | 024 | 028 | 43027 | 025 | 028 | 027 | 029 | - | 031 | | 3 | 028 | 028 | 026 | 026 | 029 | 023 | 027 | - | - | - | 025 | 030 | | 4 | 028 | 030 | - | _ | _ | 027 | 026 | - | 031 | - | - | 030 | | 5 | - | 029 | 027 | 026 | 027 | 028 | 026 | 028 | 026 | - | 026 | 031 | | 6 | 031 | 031 | 025 | - | 027 | 029 | <u>-</u> | 028 | 028 | - | 037 | 027 | | 7 | 029 | 028 | 025 | - | 025 | 026 | 026 | 031 | - | 027 | 026 | - | | 8 | 027 | 030 | 023 | 026 | 025 | - | 028 | 030 | 028 | 027 | 025 | - | | 9 | - | - | - | 029 | 028 | 024 | 027 | 026 | 029 | _ | - | 030 | | 10 | - | 032 | 024 | - ' | 027 | 026 | 030 | - | - | 030 | 028 | 028 | | 11 | 028 | 033 | 025 | 027 | - | 023 | 026 | 028 | 026 | 024 | 027 | 027 | | 12 | - | 030 | 023 | 028 | 029 | 027 | - | - | 027 | - | 029 | 029 | | 13 | 030 | 032 | - | _ , | 027 | 028 | - | 028 | 028 | 024 | - | - | | 14 | • | 031 | 030 | 022 | 026 | 027 | 026 | 026 | - | 030 | - | - | | 15 | 029 | 034 | _ | 028 | 027 | - | 031 | 024 | 028 | 025 | 029 | 028 | | 16 | 031 | - | - | 026 | 027 | 025 | 028 | 027 | 027 | 030 | - | 028 | | 17 | | 034 | 024 | 028 | 028 | 027 | 028 | - | 025 | 026 | 027 | 030 | | 18 | 030 | 032 | - | 028 | - | 024 | 026 | 026 | 028 | 025 | - | 031 | | 19 | <u>-</u> | 035 | _ | 030 | 026 | 028 | 026 | 022 | 023 | - | 029 | 028 | | 20 | 027 | 035 | - | - | 026 | 028 | _ | 024 | 029 | _ | - | 036 | | 21 | - | 037 | 025 | 027 | 027 | 029 | 027 | 031 | - | 022 | 026 | | | 22 | 029 | 036 | 024 | 024 | 029 | _ | - | 029 | 027 | 027 | 026 | 029 | | 23 | 028 | - | - | 029 | 027 | 027 | 028 | 027 | 027 | 027 | _ | 030 | | 24 | 028 | 037 | 027 | 028 | - | 026 | 027 | - | 026 | 027 | 030 | 028 | | 25 | 027 | 035 | 025 | 028 | _ | 027 | 027 | 028 | 024 | 027 | 025 | - | | 26 | _ | 034 | 025 | _ | - | 024 | 029 | 027 | 029 | - | 031 | 030 | | 27 | 029 | 023 | 026 | _ | 028 | 027 | _ | 025 | 027 | 025 | 032 | _ | | 28 | 028 | 027 | 024 | 026 | 028 | 028 | 026 | 026 | _ | 028 | - | _ | | 29 | 028 | | 029 | 026 | 026 | _ | - | 027 | 028 | 028 | _ | 028 | | 30 | 029 | | _ | 027 | _ | 025 | 025 | 029 | 018 | 029 | _ | 028 | | 31 | 030 | | 025 | 34 7 | 026 | 32) | - | - | 0.40 | 017 | | 025 | Feb. 27 - Bearings re-adjusted using spring-washers to take up future wear automatically. Apr. 10 - Recording-Room temperature raised from 11.0 C to 16.0 C. May 30 - " " " " 16.0 C " 21.0 C. Nov. 4 - " " Nowred " 21.0 C " 16.0 C. TABLE XVI(A). - MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS DETERMINED AT THE ROYAL OBSERVATORY, GREENWICH, BETWEEN THE YEARS 1818-1925 | Year | Declination
West | Horizontal
Intensity | Vertical
Intensity | Dip | Year | Declination
West | Horizontal
Intensity | Vertical
Intensity | Dip | |--------------|---------------------|-------------------------|-----------------------|--------------------|--------------|---------------------|-------------------------|-----------------------|-------------------| | | 0 / | C.G.S.Unit | C.G.S.Unit | 0 / | | 0 1 | C.G.S.Unit | C.G.S.Unit | 0 / | | 1818 | 24 19 † | • • | •• | • • | 1882 | 18 22.3 | 0.1806 | 0.4375 | 67 34. | | 1819 | 24 21 | • • | • • | | 1883 | 18 15.0 | 0.1812 | 0.4381 | 67 31. | | 1820 | 24 21 | • • | • • | • • | 1884 | 18 7.6 | 0.1814 | 0.4379 | 67 29. | | 1841 | 23 16.2 | • • | •• | • • | 1885 | 18 1.7 | 0.1817 | 0.4380 | 67 28. | | 1842 | 23 14.6 | • • | • • | • • | 1886 | 17 54.5 | 0.1818 | 0.4377 | 67 27. | | 1843 | 23 11.7 | • • | •• | 69 0.6 | 1887 | 17 49.1 | 0.1819 | 0.4380 | 67 26. | | 1844 | 23 15.3 | • • | • • | 69 0.3 | 1888 | 17 40.4 | 0.1822 | 0.4383 | 67 25. | | 1845 | 22 56.7 | • • | • • | 68 57.5 | 1889 | 17 34.9 | 0.1823 | 0.4380 | 67 24. | | 1846 | 22 49.6 | 0.1731 | • • | 68 58.1 | 1890 | 17 28.6 | 0.1825 | 0.4381 | 67 23. | | 1847 | 22 51.3 | 0.1736 | • .• | 68 59.0 | 1891 | 17 23.4 | 0.1827 | 0.4380 | 67 21. | | 1848 | 22 51.8 | 0.1731 | • • | 68 54.7 | 1892 | 17 17.4 | 0.1829 | 0.4379 | 67 20. | | 1849 | 22 37.8 | 0.1733 | • • | 68 51.3 | 1893 | 17 11.4 | 0.1831 | 0.4373 | 67 17. | | 1850 | 22 23.5 | 0.1738 | • • | 68 46.9 | 1894 | 17 4.6 | 0.1831 | 0.4374 | 67 17. | | 1851 | 22 18.3 | 0.1744 |
• • | 68 40.4 | 1895 | 16 57.4 | 0.1834 | 0.4378 | 67 16. | | 1852 | 22 17.9 | 0.1745 | • • | 68 42.7 | 1896 | 16 51.7 | 0.1835 | 0.4382 | 67 15. | | 1853 | 22 10.1 | 0.1748 | • • | 68 44.6 | 1897 | 16 45.8 | 0.1838 | 0.4377 | 67 13. | | 1854 | 22 0.8 | 0.1749 | • • | 68 47.7 | 1898 | 16 39.2 | 0.1840 | 0.4377 | 67 12. | | 1855 | 21 48.4 | 0.1756 | • • | 68 44.6 | 1899 | 16 34.2 | 0.1843 | 0.4380 | 67 10. | | 1856 | 21 43.5 | 0.1759 | • • | 68 43.5 | 1900 | 16 29.0 | 0.1846 | 0.4380 | 67 8. | | 1857 | 21 35.4 | 0.1769 | • • | 68 31.1 | 1901 | 16 26.0 | 0.1850 | 0.4381 | 67 6. | | 1858 | 21 30.3 | 0.1762 | • • | 68 28.3 | 1902 | 16 22.8 | 0.1852 | 0.4377 | 67 3. | | 1859 | 21 23.5 | 0.1761 | •• | 68 26.9 | 1903 | 16 19.1 | 0.1852 | 0.4368 | 67 1. | | 1860 | 21 14.3 | • • | • • | 68 30.1 | 1904 | 16 15.0 | 0.1854 | 0.4359 | 66 57. | | 1861 | 21 5.5 | 0.1773 | • • | 68 24.6 | 1905 | 16 9.9 | 0.1854 | 0.4355 | 66 56. | | | | 0 1770 | | | 1906 | 16 3.6 | 0.1854 | 0.4353 | 66 55. | | 1861 | | 0.1759 | | 68 15.8 | 1907 | 15 59.8 | 0.1855 | 0.4357 | 66 56. | | 1862 | 20 52.6 | 0.1763 | 0.4403 | 68 9.6 | 1908 | 15 53.5 | 0.1854 | 0.4356 | 66 56. | | 1863 | 20 45.9 | 0.1764 | 0.4396 | 68 7.0 | 1909 | 15 47.6 | 0.1854 | 0.4348 | 66 54. | | 1864 | ••• | 0.1767 | 0.4393 | 68 4.1 | 1910 | 15 41.2 | 0.1855 | 0.4345 | 66 52. | | 1865 | 20 33.9 | 0.1767 | 0.4388 | 68 2.7 | 1911 | 15 33.0 | 0.1855 | 0.4342 | 66 52. | | 1866 | 20 28.0 | 0.1773 | 0.4397 | 68 1.3 | 1912 | 15 24.3 | 0.1855 | 0.4340 | 66 51. | | 1867 | 20 20.5 | 0.1777 | 0.4392 | 67 57.2 | 1913 | 15 15.2 | 0.1853 | 0.4333 | 66 50. | | 1868 | 20 13.1 | 0.1779 | 0.4395 | 67 56.5 | | | | | | | 1869 | 20 4.1 | 0.1782 | 0.4396 | 67 54.8 | 1017 | 16 6 2 | 0 1053 | 0 (222 | | | 1870 | 19 53.0 | 0.1784 | 0.4392 | 67 52.5 | 1914 | 15 6.3 | 0.1853 | 0.4333 | 66 50.1 | | 1871 | 19 41.9 | 0.1786 | 0.4389 | 67 50.3 | 1915 | 14 56.5 | 0.1851 | 0.4331 | 66 51.0 | | 1872 | 19 36.8 | 0.1789 | 0.4383
0.4386 | 67 47.8 | 1916 | 14 46.9 | 0.1848 | 0.4326 | 66 52.2 | | 1873
1874 | 19 33.4
19 28.9 | 0.1793
0.1797 | 0.4386
0.4387 | 67 45.8 | 1917 | 14 37.1
14 27.8 | 0.1848 | 0.4330* | 66 53.0 | | 1874
1875 | 19 28.9 | 0.1797 | 0.4383 | 67 43.6 | 1918 | 14 27.8 | 0.1846 | 0.4325 | 66 52.8 | | | | 0.1797 | 0.4383
0.4383 | 67 42.4 | 1919 | | 0.1845 | 0.4324 | 66 53.3 | | 1876
1877 | 19 8.3
18 57.2 | 0.1799 | 0.4381 | 67 41.0 | 1920 | 14 8.6 | 0.1845 | 0.4325 | 66 53.0 | | 1877
1878 | 18 49.3 | 0.1800 | 0.4382 | 67 39.7 | 1921 | 13 57.6
13 46.7 | 0.1845 | 0.4322 | 66 53.0
66 52. | | 1878
1879 | 18 49.5 | 0.1802 | 0.4382 | 67 38.2
67 37.0 | 1922
1923 | 13 46.7 | 0.1844
0.1843 | 0.4318 | 66 51.9 | | 1879
1880 | 18 32.6 | 0.1805 | 0.4382 | | | 13 22.8 | | 0.4314 | 66 51. | | 1881 | 18 27.1 | 0.1807 | 0.4379 | 67 35.7
67 34.7 | 1924
1925 | 13 9.9 | 0.1843
0.1841 | 0.4311
0.4308 | 66 51.4 | In 1818, 1819 and 1820 numerous observations of Declination were made with a Dollond needle. In 1861 new Unifilar Apparatus for absolute Horizontal Intensity and the Airy Dip-Circle were introduced, both sets of apparatus being used in that year. In 1864 the excavation of the Magnetic Basement caused a suspension of Declination Observations. From 1914 the Dip was determined with an Inductor. N.B. - In the above table the values of Vertical Intensity for the years 1862-1913 inclusive were computed from the corresponding values of Horizontal Intensity and Dip, the values of Dip being the mean of all the absolute observations taken in any year, and the time of observation approximating to noon on the average. Beginning with 1914 the values of Dip have been computed from the corresponding annual mean values of Horizontal and Vertical Intensity. [†] Mean of seven months June to December. * Mean of ten months, March to December. TABLE XVI(B). - MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS DETERMINED AT THE ABINGER MAGNETIC STATION, FOR THE YEARS 1925-1947 | Year | Declination
West | Horizontal
Intensity | Vertical
Intensity | Inclination | |------|---------------------|-------------------------|-----------------------|-------------| | | 0 1 | C.G.S. Unit | C.G.S. Unit | 0 / | | 1925 | 13 22.7 | 0.18597 | 0.42946 | 66 35.1 | | 1926 | 13 10.4 | 0.18581 | 0.42947 | 66 36.3 | | 1927 | 12 58.4 | 0.18575 | 0.42932 | 66 36.2 | | 1928 | 12 47.0 | 0.18564 | 0.42941 | 66 37.3 | | 1929 | 12 35.8 | 0.18555 | 0.42918 | 66 37.2 | | 1930 | 12 24.6 | 0.18542 | 0.42924 | 66 38.2 | | 1931 | 12 13.7 | 0.18543 | 0.42923 | 66 38.1 | | 1932 | 12 2.6 | 0.18536 | 0.42940 | 66.39.1 | | 1933 | 11 51.7 | 0.18532 | 0.42942 | 66 39.4 | | 1934 | 11 41.1 | 0.18533 | 0.42955 | 66 39.7 | | 1935 | 11 30.3 | 0.18527 | 0.42981 | 66 40.9 | | 1936 | 11 20.0 | 0.18524 | 0.43007 | 66 41.8 | | 1937 | 11 10.4 | 0.18522 | 0.43031 | 66 42.7 | | 1938 | 11 1.4 | 0.18522 | 0.43050 | 66 43.2 | | 1939 | 10 51.9 | 0.18528 | 0.43074 | 66 43.5 | | 1940 | 10 43.0 | 0.18533 | 0.43099 | 66 43.9 | | 1941 | 10 33.8 | 0.18539 | 0.43128 | 66 44.3 | | 1942 | 10 24.8 | 0.18554 | 0.43146 | 66 43.9 | | 1943 | 10 16.2 | 0.18556 | 0.43172 | 66 44.5 | | 1944 | 10 7.8 | 0.18566 | 0.43189 | 66 44.3 | | 1945 | 9 59.5 | 0.18573 | 0.43207 | 66 44.3 | | 1946 | 9 51.1 | 0.18569 | 0.43235 | 66 45.4 | | 1947 | 9 43.1 | 0.18577 | 0.43246 | 66 45.2 | | l e | | | | | The values of Inclination are computed from the corresponding values of horizontal and vertical intensity. Commencing with the years 1927 and 1929 respectively, the values of horizontal and vertical intensity are based upon observations with Coil-magnetometers. * Discontinuities of -1.7 γ in H and -3.9 γ in Z were introduced in 1938. See Introduction p. x and xi. The range in declination during the month was from $9^{\circ}30'.2$ on 26th to $10^{\circ}1'.4$ on 16th; in horizontal intensity from .18461 to .18658, both on 25th; in vertical intensity, from .43197 on 16th to .43342 on 25th. February. During the first six days the general condition was quiet, though a few irregularities showed occasionally on the traces. From γ^d6^h the irregularities increased in extent, becoming a moderately active disturbance by 8^d17^h. This comprised several movements of at least 50γ in H and 10' in D but had ceased at 9^d6^h. At 9^d20^h21^h there was a sharp easterly movement in D (21') which was partially regained during the next hour and was accompanied by a minor series of oscillations in H. Unsteady conditions then prevailed, gradually lessening, until 15th, which was quiet. At 16^d2^h59^m0 a sudden movement occurred in all traces, and five hours later a disturbance of moderate dimensions began to develop. The principal characteristic was the large number of semi-regular oscillations. Z increased 130γ between 10^h2^h and 17^h and there were notable changes in D at 16^d16^h to 17^h (23'E), at 17^d0^h20^m to 0^h50^m (20'E), and at 17^d2^h2^h to 3^h2^h (20'W). The disturbance ceased at 17^d7^h, but unsteadiness continued to affect the traces at intervals, unsteadiness amounting to a state of brisk activity between 19^d14^h and 20^d4^h. At the height of this activity there were movements in H just exceeding 50γ, -notably one at 23^h2^h (*70γ) - and a wave in D at 21^h (12'). The interval from 20^d12^h to 24^d0^h was practically quiet. Unsteadiness then set in again and prevailed for the remainder of the month, becoming specially marked between 25^d21^h and 26^d5^h. The range in declination during the month was from 9°25.6 on 17th to 10°0.8 on 16th; in horizontal intensity, from .18451 to .18630, both on 16th; in vertical intensity, from .43201 on 17th to .43341 on 16th. March. A prominent, though small, wave appeared on all traces at 2^d4^h1^m which may have been the initial movement of the prolonged disturbance, which began to develop rapidly following an abrupt movement in all elements at 2^d8^h17^m6. Oscillations at first were numerous rather than large, but there was a general decrease of H between 2^d11^h and 13^a1^h (160γ), followed by a slow increase of Z (250γ) which lasted until 2^d20^a1^h and then relapsed rather quickly. A general easterly trend in D occurred between 2^d19^h and 3^d2^h during which the value ranged through 50′. A temporary lull was shown from 3^d4^h to 16^h, the elements returning to about normal values. The storm then rose to its climax, which occurred from about 3^d18^h to 4^d2^h. The extreme ranges during this interval were: 60′ in D, 410γ in H and 345γ in Z. Large movements continued until 4^d9^h, after which the disturbance rapidly subsided, the final movements being a wave in H (+80γ) and in D (16′E) at $4^{d}19^{h}$. Beginning with a sudden small change at $7^{d}5^{h}36^{m}$ there was prolonged minor, but rapid oscillation. This merged into the second large disturbance of the month which first showed as a rapid decrease of H (120y) from 8d8h to 9th. By 8d12h the disturbance was in full activity. Oscillations were numerous, — occasionally as many as ten per hour. The largest waves in H occurred at $8^d14^h_1$ (+180 γ), $9^d0^h_1$ (+150 γ), $9^d0^h_2$ (+140 γ) and $9^d1^h_1$ (+120 γ). Between $8^d23^h_1$ and 84^h_1 there was a double wave in D (24'E and W) followed during the next hour by two other waves of 20'. Z increased 200γ between 8^d12^h and $17\frac{1}{2}^h$ and then gradually declined to normal values which were reached by 9^d2^h . The disturbance was virtually over by 9^d10^h . There was much unsteadiness during the remainder of 9th and this condition persisted through 12th, 13th and 14th, prominent bays showing at 14d16h (+80y in H). At 15d8h41m4 there was a large typical movement of the sudden commencement class in all traces. That in H ranged through 90%, in D through 13'. The disturbance which followed was not specially noteworthy, and was quite short-lived, being over in less than ten hours. The principal feature was an increase of Z (140y) between 12th and 16th, soon
afterwards declining to normal value. There was at the same time a temporary increase of H (100 γ). Further brisk disturbance was recorded between $16^{d}16^{h}$ and $17^{d}7^{h}$, the principal movement in which was a wave in D (15'W) at 17^dO₄^h. Considerable irregularity persisted during the next six days without presenting any notable features until 23d10h, when activity became very marked. Z increased 120 γ between $11\frac{1}{2}^h$ and $16\frac{3}{2}^h$ but quickly returned nearly to normal value. A wave in H (+50 γ) appeared at 15^h, accompanied by a steady easterly movement in D (16'); a rather prominent wave in D (15'W) occurred at 24^d3^h and a broad wave in H (+110 γ) between 24^d4³^h and 7^h, with which was associated an oscillatory easterly trend in D (15'). After 24^d8^h the normal condition of general unsteadiness returned and continued until 27d18h, becoming greatly accentuated during the second half of the period. A sudden movement of the traces at $27^{d}4^{h}29^{m}$ may have been connected with a protracted disturbance which began to develop at $27^{d}18^{h}$. This disturbance though not comprising large ranges, was very active and included many oscillatory movements of about 30 or 40 γ . A notable feature was the general easterly movement in D (25') between $27^d23\frac{1}{2}^h$ and 28^d2^h . There was also a considerably enlarged diurnal inequality in Z on 28th, the whole range being 160 γ . After a short lull, extending from 29^d2^h to 12^h, activity was resumed with the same general characteristics, and prevailed until 31^d18^h. The range in declination during the month was from 9°6.2 on 3rd to 10°12.3 on 8th; in horizontal intensity, from .18233 on 3rd to .18714 on 2nd; in vertical intensity, from .43099 to .43443 both on 3rd. April. Conditions were markedly unsteady throughout the month, the only days on which smooth or nearly smooth traces appeared being 21st to 24th. A movement of "sudden commencement" type took place at 3d15h1,0, but was not followed by a significant disturbance, although many small irregularities were shown during the next thirty-six hours. A decrease of H (85γ) occurred between 6d7h and 9h and a very steep wave (-40y) at 6d11h50m. Another "sudden commencement" movement (in which the range in H was 105 γ) was recorded at 8^d 21 h 49 m 2, affecting all traces, but again, the activity which followed was confined to a large number of minor oscillations, few of these exceeding 5y, and the prevalent state of general unsteadiness was scarcely accentuated. At about 16^d12ⁿ there were signs of increasing disturbance but they led to no development until 17^d12^h24.8 when a very sudden movement in all traces was the beginning of a storm, which though comparatively short was at its climax relatively intense. Almost the full ranges (which were 67' in D and 3737 and 345 γ in H and Z respectively) were comprised within the period $19\frac{1}{2}^h$ to $22\frac{1}{2}^h$; and in the case of Z the extreme range was accomplished between 21^h55^m and 22^h11^m that is in sixteen minutes of time. The storm was virtually over by $18^{d}2^{h}$, though large numbers of small oscillations continued for a further eighteen hours, and at $18^{d}21\frac{1}{2}^{h}$ there was a prominent wave in D (25'E). A further period of minor activity began at $19^{d}5^{h}$ and lasted until $21^{d}0^{h}$. This also was notable for the number of small oscillations, as many as 15 being recorded in one hour. A quiet period which began at 21d9h lasted until 25d15h when a wave in H (+60y) at 163h presaged the return to marked unsteading ness, - a condition which prevailed for the remainder of the month, though most pronounced between 26^d14^h and 27^d0^h. The range in declination during the month was from 8°58'8 to 10°6'1; in horizontal intensity, from .18332 to .18705; in vertical intensity, from .43029 to .43374. All these ranges occurred on 17th. May. Conditions were very unsteady on 1st, especially during the earlier hours, and there were waves in H at $12\frac{1}{2}^h$ (+25y) and $18\frac{1}{2}^h$ (-40y). Unsteadiness prevailed in a smaller degree until the end of 6th. A period of quiet conditions followed which continued until 11^d12^h. Irregular movements then began and became increasingly frequent during 12th. The largest was a wave in H (+45 γ) at $12^{d}2^{+}_{4}$. Brisk activity set in at $13^{d}15^{h}$ in the form of a series of nearly regular oscillations having an average period of about one hour and an amplitude in H, of 30 to 40%. The regularity disappeared after $14^{ m d}5^{ m h}$ the character then changing to large numbers of quite small movements. These gradually increased in size during 15th until they reached the dimensions of those on 13th, being however, less regular and more frequent. After 16d 18h activity declined markedly, though the diurnal inequality remained above average in range. An instance of this was the increase of 90γ in H between 18^d16^h and 18^h . From 19^d18^h to $22^d22^{\frac{1}{2}h}$ only slight irregularities disturbed the traces, but at 22 122 143 4 there was an abrupt movement in each which in the case of H represented an increase of 70γ in five minutes. Considerable activity followed during the next thirty hours, but the movements were seldom greater than 20 y excepting the very rapid easterly drift in D (26') between 23^d3½^h and 5^h, partially restored by an even more rapid westerly movement (14') between 23^d6^h and 6½^h. At 24^d6^h45.0 an exceptionally sudden movement was recorded in all elements, amounting almost to a momentary dislocation of the traces. The change in H was +110y; in D 10'W, in Z +28γ. Normal values were regained within two minutes and the subsequent disturbance was particularly brief. It consisted mainly of one large double wave in each element (having many minor oscillations superposed) beginning at 24^d7^h30^m and ending at 24^d10^h30^m. The full ranges were: 240 y in H,60 y in Z and 38' in D. From 24^d11^h until 28^d3^h almost continuous slight disturbance affected the traces. Occasionally as many as ten small waves (about 10 γ) were recorded in one hour. Disturbance was particularly notable between 26^d15^h and 27^d4^h and between 28^d12^h and 29^d0^h . At $29^d14^{\frac{1}{4}h}$ a sharp increase in H began which had amounted to 110γ by $15^{\frac{1}{2}h}$. It was preceded and followed by a steady increase in Z (90γ), the maximum being reached at $17^{\frac{1}{2}h}$. The decline to normal values was gradual. A nearly quiet period began to 30^d3^h and lasted until 31^d8^h . Activity then recommenced and by the end of the day was brisk, several movements in H approaching 50 y. The range in declination during the month was from 9°18.0 on 24th to 9°58.2 on 19th; in horizontal intensity, from .18374 to .18702, both on 24th; in vertical intensity, from .43184 on 16th to .43320 on 29th. June. A brief spell of activity, in progress at the opening of the month, ended at 1^d10^h . The principal movement was a double wave in H $(\pm 50\gamma)$ at 1^d0^h to $1\frac{1}{4}^h$ accompanied by a related change in D (9'W and E) and a rapid temporary decrease in Z (45 γ). A period of considerable unsteadiness followed which, with a very sudden movement at $5^d \gamma^h 25^m 6$, merged into one of brisk activity lasting until $6^{d}3^{h}$. The initial movement in H was an increase of 65γ followed, after three rapid oscillations, by a wave (-90γ) at $8\frac{1}{4}$. Subsequent movements were much smaller and of an oscillatory character, but a slow general increase in H occurred (150 γ) between $14\frac{1}{2}^h$ and $18\frac{1}{4}^h$ with a gradual return to normal value which was attained by $6^{d}O_{\frac{1}{2}}^{1}$. A movement of D (18'W) accompanied the wave in H, and the disturbed period ended with a prominent wave in D (17'E) at 6dO1h. Very unsteady conditions persisted throughout 7th 8th and 9th, moderating on 10th, but still far from quiet. At 13d17h49m0 a typical "sudden commencement" was registered in all elements, - +85Y in H, +22Y in Z, 5'W in D. The disturbance which followed was only of minor dimensions, the movements being numerous rather than large. The principal periods of activity were from 12^d23^h to 13^d5^h and from $14^{d}17_{2}^{h}$ to 22^{h} . Waves just exceeding 20' occurred in D during the first of these, the total range being 32', that of both H and Z being approximately 100%. In the second period, the most prominent feature was a steep wave in H (+120 γ) at $14^{d}20_{4}^{3h}$. The disturbance had subsided by $15^{d}3^{h}$, though much unsteadiness was still shown by the traces. Further disturbance began with an abrupt change in all elements at 17^d3^h1^m and continued as a sequence of small rapid irregular oscillations until 14h when the oscillations in H were superposed on larger waves. The most prominent of these was between 17^d17^h and 18½^h (+110γ). Between 17^d18^h and 19^h there was an easterly swing of 16' in D. From $18^{d}4^{h}$, by which time the disturbance was over, a return to the prevailing condition of marked unsteadiness was apparent. This continued unabated until the end of 28th, particularly conspicuous periods being between $22^{d}16^{h}$ and $23^{d}18^{h}$ and between $24^{d}16^{h}$ and $25^{d}20^{h}$, when the dimensions of a minor disturbance were nearly reached, with several movements exceeding 50γ in H. After a short quiet spell on 29th, unsteady conditions returned on 30th. The range in declination during the month was from $9^{\circ}22.6$ on 14th to $9^{\circ}59.7$ on 17th; in horizontal intensity, from .18481 to .18707 both on 14th; in vertical intensity, from .43142 on 14th to .43304 on 17th. July. There was a continuance of unsteady conditions during the first three days, and a broad wave appeared on the H
trace between 2d14h and 18h (+90y). An almost quiet period lasted from 3d22h to 6d10h. Conditions then became unsteady again, particularly during the second half of 8th, the early part of the 10th and the middle part of 11th when a few movements in H approached 50y. There was also a rapid increase of H (60y) between 13d15h and 16h and an abrupt movement, most noticeable in D, at 16d1h10m. A second quiet spell began at 16d3h and ended at 17d9h when signs of approaching disturbance appeared. The disturbance itself commenced suddenly at 17d17h48m4 with a very large movement in H (+350y in twenty minutes) accompanied by much smaller changes (50y) in D and Z. H returned to normal values in three main oscillations, the first and chief (-300y) between 17d18h10m and 18h40m, the others between 19h20m and 21h5m and between 21h5m and 22h55m respectively. The large movements were succeeded by a series of many oscillations of the order of 20y in H and D, with a few rising to 50y and over, especially during the period 18d8h to 12h. The character then changed and large irregular movements began again. The principal example was in H which experienced a wave of ~150y between 18d14h and 16h. The change in Z between 18d13h and 18h was *110y, but this increase was steadily lost and had disappeared by 19d1h. Oscillations of a more or less regular type began about 19d10h, the range in H being between 30y and 40y. There was a sharp movement in D (15 E) between 20d4h and 5h, - by which time the oscillations had become insignificant, - and a prominent wave in H (+80y) at 20d15h. Great unsteadiness continued to be the prevailing characteristic of the traces until the end of 27th, although less marked on 21st and the first half of 22nd. Mention may be made of a rapid decrease of H (65y) between 23d6h and 6h40m and of a steady increase (90y) between 24d13h40m and 16h15m. Three specially prominent oscillations in H occurred The range in declination during the month was from 9°20'2 on 18th to 10°0'4 on 17th; in horizontal intensity, from .18470 on 19th to .18992 on 17th; in vertical intensity, from .43193 on 9th to .43341 on 18th. August. Conditions were rather disturbed at the beginning of the month, irregular oscillation, particularly in H, being the prevailing characteristic. A few of the movements were of the order of 30y. There was a notable abrupt change of declination (crochet 7'W) at 1d15h17m which however, was quite short-lived, the value returning to normal in twelve minutes. Unsteadiness gradually diminished after 3rd, but there was a temporary revival between 6d10h and 7d5h. From 8d18h to 9^d21^h conditions were practically quiet. Small irregular movements then re-appeared and increased in size and frequency until by 12^d0^h a state of moderate disturbance existed. A particularly sharp movement, resembling a "sudden commencement" was recorded at 12d9h5m9, in which the range of the double wave in H was 70 γ . During the second half of 13th disturbance further increased and between $16^{h}55^{m}$ and $17^{h}30^{m}$ H decreased 130 γ , recovering most of this decrease during the next hour. From $14^{d}4^{h}$ to $15^{d}9^{h}$ only small irregularities appeared on the traces. Then a brisk storm began with a sudden movement in all elements at 15^d9^h50.6 (H, +50γ; D, 49'E). Subsequent oscillations were very numerous, averaging six or seven per hour, and were most extensive in H, a few reaching 50 γ . A notable wave in H occurred between $15\frac{1}{2}^h$ and $16\frac{1}{2}^h$ (+140 γ). The climax of the storm was between 15^d 22 h and 16^d 1 h . There was an oscillatory decrease of H (270 γ) from 15^d 20 $\frac{1}{2}^h$ to 16^d 0 $\frac{1}{2}^h$ followed immediately by a rapid increase (1807). Similar changes in the other two elements were registered (20 E in D; 70 Y in Z), and then at $16^{\rm d}O_2^{\rm ih}$ an exceptionally prominent wave in both D and Z practically brought the storm to an end. The amplitudes of these waves were, respectively, *40' and ~180γ. After a short period of relative quiet, disturbance recommenced at 16 to and continued without intermission until the end of 21st. The movements were numerous, and many approached 100 y in horizontal intensity with corresponding changes in D. The principal movements approached 100 γ in horizontal intensity with corresponding changes in D. The principal movements only will be mentioned. In H: an increase of 80 γ between $16^d 10\frac{1}{2}^h$ and $11\frac{1}{2}^h$; a wave (-90 γ) at $17^d 16\frac{1}{2}^h$; a decrease of 130 γ between $18^d 6^h$ and $9\frac{1}{4}^h$; a wave (+80 γ) at $18^d 18\frac{1}{2}^h$; an irregular wave (-120 γ) at $19^d 16\frac{1}{2}^h$; a wave (+90 γ) at $20^d 16^h$. In D: a movement 20'E, between $17^d 4\frac{1}{2}^h$ and $6\frac{1}{2}^h$; a wave, 15'E, at $17^d 21\frac{1}{2}^h$; a wave, 12'W, at $18^d 1\frac{1}{2}^h$; a wave, 15'W, at $20^d 1\frac{1}{2}^h$; a wave, 14'E, at $21^d 20\frac{1}{2}^h$. In Z: a slow surge (+110 γ) between $17^d 12^h$ and 22^h ; a wave (-60 γ) at $18^d 2^n$; much enlarged diurnal inequality on 18th, (100 γ), and on 19th; a wave (-40 γ) at $20^d 1\frac{1}{2}^h$; increase of 65 γ between $20^d 12^h$ and $16\frac{1}{2}^h$. A second relatively quiet spell lasting from $20^d 12^h$ and . $22^{ m d}$ $^{ m h}$ to $^{ m h}$ was terminated at $22^{ m d}$ $^{ m h}$ 10 $^{ m m}$ 8 by a remarkable sudden change in all elements. In H an increase of 95 yoccurred in less than one minute, followed immediately by a decrease of 170 y in the next minute. There was a similar change in D, 18'W and 33'E and in Z +25 y and -55 y and a very active storm developed at once. The climax was soon past, however, and with the exception of a prominent peak in H (+160 γ) at 23^dO₂^h movements were numerous rather than large after 22^d13^h. The total ranges during the most active period were 415 γ , 140 γ and 54' in H, Z and D respectively. There were prominent changes on 23rd which it is desirable to mention besides that in H, already noted, namely, a movement in D (23'E) between 1½^h and 2½^h; a decrease of Z (70 γ) between 0½^h and 1½^h; and an increase of H (110 γ) accompanied by an increase of Z (70 γ) between 13½^h and 14^h. Great and continuous unsteadiness persisted until 26^dO^h, after which the movements were intermittent and smaller, declining to a practically quiet condition between 27^d9^h and 28^d12^h. Unsteadiness then revived, but was slight between 30^d10^h and 31^d10^h. The range in declination during the month was from 9°20'.1 on 16th to 10°0'.3 on 15th; in horizontal intensity, from .18238 on 22nd to .18711 on 15th; in vertical intensity, from .43050 to .43347 both on 16th. September. Conditions were unsteady, generally, during the whole of the month. The first storm was preceded by an abrupt movement in all traces at $2^d23^h26^m$, that of H showing +60 γ . Full development was delayed until 3^d6th when it was almost sudden and was characterised by rapid oscillatory changes frequently exceeding 50 γ in H. There was a general decrease of H (200 γ) between $3^d \gamma^h$ and , including one double wave (±70γ) in the short space of three minutes at 8h30m, but recovery set in at once and in spite of several large oscillations, three of which exceeded 1007, was complete by $17^{\rm h}$. After the initial stages the movements in D were comparatively small, though numerous. The most remarkable change occurred between $3^{\rm d}9^{\rm h}$ and $9^{\rm ah}_{\rm a}$ (30'W). Vertical intensity increased steadily between $3^{\rm d}10^{\rm h}$ and $19^{\rm h}$ (120 γ), after which there was an irregular return to normal value, complete.by 24h. The final movement was a decrease of H (60y) between 4d5h and 6h. Another abrupt movement in all traces occurred at $4^d 13^h 46^m$ (+65 γ in H). It was followed at once by about six hours of brisk disturbance, but no movement exceeded 90%. A third abrupt movement was registered at 5^d18^h2^m and was followed by about eight hours of moderate activity. The movements, however, were considerably smaller than those on the previous day. Beginning at 6d12h and lasting for approximately 48 hours there was a period of very considerable disturbance. Movements at first were not large, although the diurnal range of Z reached 90 y on the 6th, but from 7d14h to 22h numerous irregular oscillations appeared, at least one of which exceeded 100γ in H. Prominent changes in D occurred at 7^d1^h (12'W) and at 7^d18½^h (18'E) and 20^h (15'W); while the total range in Z was 85γ. From 9^d1^h to 11^d11^h conditions were nearly quiet, but from then onwards they were, in Z was 85γ. From 9^d1ⁿ to 11^d11ⁿ conditions were nearly quiet, but from then onwards they were, in general, highly disturbed until 29^d0^h, — an unusually prolonged period. Some of the principal features of the traces will be mentioned:— 11^d16^h to 17½^h, a wave in H (*85γ); 13^d6^h to 7½^h, a decrease of H (90γ); 13^d21½^h to 23^h, a wave in D (22'E); 14^d11^h to 24^h slow surge in Z (*120γ) 14^d17-18^h, a wave in D (17'E); 14^d21^h to 23^h a wave in D (21'W); 15^d14^h54^m9, a movement of "sudden commencement" type in all traces, *105γ in H, 13'W in D; 15^d20-21½^h, a double wave in D (16'W and E); 17^d18-18½^h, a sharp peak in H (*95γ); 17^d22½^h to 18^d1^h, a wave in D (20'W); 18^d17^h to 18^h, a wave in D (18'E) followed by a wave in H (*90γ); 18^d23½^h a wave in Z (~50γ) and in D (15'W); 22^d16½^h a wave in D (17'E); 23^d5^h to 7^h, a wave in H (*80γ); 23^d12^h9^m1, a quasi-sudden commencement move in all traces. move in all traces, (-90 γ in H). The last mentioned movement was probably connected with a great storm which developed fairly quickly from $24^{d}13^{h}50^{m}$ onwards. The storm was remarkable for the range in Z
(340 γ), which exceeded the range in H by about 30 γ . The period of greatest activity extended from $24^{d}15^{h}$ to 21^{h} and included the maximum range in D (67'), but there was a second very active interval from $25^{d}0^{h}$ to 7^{h} , after which the storm rapidly declined, though continuing in a minor degree until 26^d4^h. During the remainder of the month there was a state of diminishing general unsteadiness, terminated at 30d18h18m2 by a sudden "kick" in all traces presaging another storm. The movement in H was an increase of 60%. The development of this storm, however, did not take place at once and belongs to October. The range in declination during the month was from 9°12.1 on 25th to 10°19.0 on 24th; in horizontal intensity, from .18406 on 25th to .18714 on 24th; in vertical intensity, from .43144 to .43486, both on 24th. October. From $1^d 4\frac{1}{4}^h$ the traces were agitated by many small movements, a state which lasted until $1^d 12^h$. The irregularities then became fewer, but after $1^d 19^h$, considerably larger. There was a decrease of H (110 γ) between $19\frac{1}{2}^h$ and $19\frac{1}{2}^h$ and a movement of D (17'E) between $21\frac{1}{2}^h$ and 22^h . The period from 2^d15^h to 3^d6^h comprised a disturbance sufficiently great to be classed as a small storm. Several movements exceeded 100 γ in H and 10' in D, while Z, which had been steadily increasing, diminished irregularly by 180 γ between $2^d15^h_2$ and $3^d0^h_2$. The largest movements in H occurred between $2^d18^h_2$ and 19^h (-120 γ) and between $3^d0^h_2$ and 1^h (+120 γ), the latter being accompanied by a wave in D (22'E) and a wave in Z (-60 γ). After 3^d6^h conditions became rapidly less disturbed and the period from 4^d0^h to 7^d16^h was relatively quiet. Activity, which recommenced at 7^d16^h , steadily increased during the next two days. It continued unabated until the end of 12th and then in varying degree, but with no quiet intervals, until the end of 15th. Some of the more prominent movements will be given individual mention. The first was a wave in D (15'E) $7^d20^h_1$ to 22^h_1 ; there was an increase of H (100 γ) between 9^d16^h and 16^h ; a range of 140 γ in Z between 9^d16^h and 10^d2^h ; a wave in D (15'E) at $9^d21^h_2$; a wave in D (20'E) between $10^d19^h_2$ and 16^h ; a wave in H (+100 γ) between $12^d1^h_2$ and 16^h ; a wave in H (+100 γ) between $12^d1^h_2$ and 16^h ; a wave in H (+100 γ) between $12^d1^h_2$ and 16^h ; a wave in H (+100 γ) between $12^d1^h_2$ and 16^h ; a wave in H (+180 γ) between $16^d1^h_2$ and 16^h between $11^d19^h_2$ and 16^h ; a wide bay in D (16'W) between $14^d10^h_2$ and, finally, a doublewave in H (+180 γ) between $15^d21^h_2$ and 23^h_2 . From 16^d0^h the irregularities became, in general, much smaller, but on 18th and 19th there was a partial return to the earlier condition and prominent waves occurred in all traces at $19^d19^h_2$ h. From 16^d0^h the irregularities became, in general, much smaller, but on 18th and 19th there was a partial return to the earlier condition set in. There were still isolated waves on the traces, however, the most prominent of which was one in D (12'W) between $24^d0^h_2$ and The range in declination during the month was from 9°18.4 on 2nd to 9°56.7 on 9th; in horizontal intensity, from .18459 on 10th to .18686 on 15th; in vertical intensity, from .43174 on 3rd to .43356 on 9th. November. General unsteadiness prevailed at first, which diminished gradually until 5^d, conditions then becoming quiet. Unsteadiness was resumed from about 7^d20^h and from 8^d10^h took the form of a series of almost regular oscillations, specially notable in H and concluding at 9^d1½^h. The average amplitude of these was 20\gamma in H and 3' in D. They were inconspicuous in Z. A spell of brisk activity began at 9^d12^h.0^m with a sharp decrease of H (100\gamma). This was followed by a series of irregular oscillations, a few of which reached 50\gamma in amplitude, terminating at about 10^d5^h. The accompanying changes in D were similar, but between 9^d20^h and 10^d2^h were considerably larger. In particular, there was an easterly movement of 26' between 10½^h and 21^h; a steep wave (23'W) at 23^h and a broader wave (18'W) between 10^d1^h and 2^h. The most prominent feature of the Z trace was a trough (-60\gamma) at 9^d23^h. A temporary lull extending from 10^d5^h to 10^h was followed by renewed activity, the movements being rather less frequent than on the previous day. A series of four sharp peaks in H, with associated changes in Z and D, was recorded between 10^d20^h and 11^d2^h, the largest of which (+90\gamma) occurred at 10^d20^h. At 11^d6^h52^m the character of the disturbance changed abruptly to one in which many small sharp movements predominated, - sometimes at the rate of fifteen to twenty per hour. A few larger isolated waves appeared, the principal of which, in H, occurred at 11^d14^h (-90\gamma), and in D, at 11^d41^h (22'E) and 17^h18'E). In Z there was a slow surge (+80\gamma) between 11^d13^h and 21^h. After 11^d21^h the former character returned, but activity steadily declined, and by 12^d6^h the normal degree of prevailing irregularity was reached. A rather prominent wave in the H trace (+50\gamma) occurred at 15^d2h, and another (+55\gamma), with a steep rise at 16^d22^h41^m and associated movements in the other traces, - reached its crest The range in declination during the month was from 9°17.3 on 9th to 9°59.1 on 11th; in horizontal intensity, from .18449 on 9th to .18656 on 10th; in vertical intensity, from .43190 on 9th to .43335 on 11th. December. There was an abrupt movement in all traces at 1^d8^h52^m7 followed merely by a small wave in H (-50γ). From 1^d12^h to 2^d10^h conditions were practically quiet, but slight general unsteadiness then appeared which increased considerably during 4^d. At 5^d3ⁿ a wave in D (10'W) was followed by a rather smaller one in H (+35γ) and unsteadiness continued to increase, the period between 5^d23^h and 7^d2^h being moderately active with many minor oscillations superposed on larger movements. The whole range, however, amounted only to 100γ in H and 29' in D. There was a prominent wave in D (10'E) at 7^d16ⁿ and a short spell of moderate activity between 9^d13^h and 10^d0^h in which the largest movement was an increase of 70γ in H at 9^d19ⁿ Unsteadiness became very marked from 11^d16^h to 13^d4^h and comprised one bay in H just exceeding 60γ (at 12^d16ⁿ2^h). From 16^d6^h to 18^d0^h quiet conditions supervened. Slight unsteadiness then returned, but a further quiet spell appeared which lasted from 21^d14^h to 22^d8^h. Between 22^d12^h and 31^d0^h there was general unsteadiness in varying degree, including a few isolated bays, the chief of which was one in H (+60γ) at 24^d21ⁿn. December 31 was practically quiet. The range in declination during the month was from 9°22.2 on 6th to 9°50.2 on 23rd; in horizontal intensity, from .18508 on 12th to .18642 on 24th; in vertical intensity, from .43220 to .43290 both on 6th. The absolute maximum and minimum values respectively of the elements recorded during the year were: Declination, 10°19'.0 on September 24th; 8°58'.8 on April 17th. Horizontal Intensity, .18992 on July 17th; .18233 on March 3rd. Vertical Intensity, .43486 on September 24th; .43029 on April 17th. # SCALES FOR THE MAGNETIC ELEMENTS Plate II 1947 MAR 8-9 # 1947 SEPT 2 - 3 # Results of Meteorological Observations 1947 | | | | | TABLE | XVII. | - DAIL | Y RESUL | TS OF 1 | гне мет | EOROLO | GICAL | OBSER | VATIONS | | | | | | |----------------------------|---|--------------------------------------|---|------------------------------------|---|--|---|---|--------------------------------------|---|---------------------------------|----------------------------|---|---|---|---|---------------------------------|--------------------------------------| | | BAROMETER | | | ŗ | EMPERATU | RE | | | | | | | TE | MPERATUR | E | ω. | | | | Month
and | Hourly
rrected
1 to 32
e1t) | | (| Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai
and | rence be
r Temper
Dew Poi
mperatur | ature
nt | f Humidity
ion = 100) | Of Rad: | iation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32°
Fanrenhelt) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree of
(Saturatio | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collection No.6, whose surface above t | of
Sun-
shine | Horizon | | | in. | ۰ | 0 | 0 | 0 | ٥ | ۰ | ٥ | 0 | ۰ | ٥ | | 0 | ٥ | 0 | in. | hours | hours | | Jan. ₁ 2 3 4 5 | 29. 828
29. 888
29. 981
29. 973
29. 672 | 43.0
44.8
44.0
37.4
36.3 | 32. 2
28. 9
28. 8
29. 8
29. 8 | 10.8
15.9
15.2
7.6
6.5 | 35.7
38.9
35.8
34.7
32.7 | - 2.9
+ 0.5
- 2.5
- 3.6
- 5.5 | 34. 7
37.
6
34. 2
33. 4
31. 4 | 32.9
35.7
31.4
31.1
29.4 | 2.8
3.2
4.4
3.6
3.3 | 5.1
9.1
6.7
5.1
6.0 | 1.0
1.3
1.9
0.3
1.0 | 90
88
84
86
86 | 52. 2
46. 9
72. 4
45. 2
45. 8 | 23.6
18.5
18.4
23.0
23.0 | 44.8
44.7
44.6
44.4
44.2 | 0.000
0.147
0.002*
0.000
0.000 | 1.6
0.1
2.7
0.3
0.0 | 7.9
7.9
7.9
8.0
8.0 | | 6
7
8
9
10 | 29.552
29.621
29.539
29.554
29.758 | 31.0
34.9
45.8
45.1
44.5 | 24. 7
28. 0
33. 8
35. 1
29. 5 | 6.3
6.9
12.0
10.0
15.0 | 27.7
32.2
37.4
40.9
38.1 | -10.4
- 5.8
- 0.5
+ 3.0
+ 0.2 | 26.1
31.3
37.0
39.4
37.4 | 22. 7
29. 8
36. 4
37. 4
36. 3 | 5. 0
2. 4
1. 0
3. 5
1. 8 | 7.0
3.8
1.7
9.4
4.1 | 3.4
0.0
0.0
1.1
0.0 | 80
90
96
87
93 | 30.0
44.3
46.0
69.9
58.0 | 25. 4
27. 0
31. 6
27. 0
20. 4 | 43.9
43.8
43.7
43.6
43.6 | 0.183
0.179
0.166
0.000
0.124 | 0.0
0.0
0.0
4.2
0.4 | 8.0
8.0
8.1
8.1
8.1 | | 11
12
13
14
15 | 29.349
29.363
29.228
29.556
29.782 | 50.0
48.6
48.7
53.0
52.2 | 40.3
39.4
38.2
37.0
45.8 | 9.7
9.2
10.5
16.0
6.4 | 44.4
44.1
43.8
46.9
49.7 | + 6.5
+ 6.2
+ 5.8
+ 8.9
+11.6 | 42.9
42.2
40.5
45.1
46.9 | 41.0
39.7
35.7
43.0
43.7 | 3. 4
4. 4
8. 1
3. 9
6. 0 | 7. 2
7. 5
16. 3
7. 0
8. 6 | 0.7
1.7
4.0
2.2
3.2 | 88
85
73
86
80 | 55.8
60.3
77.7
57.2
65.6 | 34.9
34.0
31.2
30.0
39.0 | 43.6
43.3
43.5
43.7
43.8 | 0.048
0.201
0.116
0.050
0.002 | 0.0
2.5
3.6
0.0
0.0 | 8. 2
8. 2
8. 2
8. 3
8. 3 | | 16
17
18
19
20 | 29.816
30.020
30.280
30.244
30.097 | 54.2
51.5
47.6
39.2
39.7 | 43.9
39.0
35.3
35.2
33.3 | 10.3
12.5
12.3
4.0
6.4 | 48.3
45.6
41.1
37.5
37.0 | +10.0
+ 7.1
+ 2.5
- 1.2
- 1.8 | 45.6
42.7
39.2
37.1
35.5 | 42.4
38.8
36.5
36.5
33.1 | 5. 9
6. 8
4. 6
1. 0
3. 9 | 12.5
12.5
9.5
2.5
10.7 | 2.1
3.4
0.6
0.0
0.4 | 80
77
83
96
85 | 88.1
75.3
73.0
42.1
62.6 | 32.5
32.0
26.2
27.1
28.0 | 43.8
43.9
44.2
44.0
44.0 | 0.005
0.028
0.000
0.000
0.000 | 6.5
2.5
5.2
0.0
0.9 | 8.3
8.4
8.4
8.5
8.5 | | 21
22
23
24
25 | 30.111
30.148
30.236
30.315
30.050 | 38.0
37.3
33.6
31.9
32.0 | 27.0
26.7
26.8
26.2
22.4 | 11.0
10.6
6.8
5.7
9.6 | 32.8
32.0
31.0
28.7
28.6 | - 6.0
- 6.8
- 7.9
-10.2
-10.5 | 31.0
29.9
29.3
27.3
27.5 | 28. 1
26. 5
26. 5
24. 8
25. 6 | 4.7
5.5
4.5
3.9
3.0 | 12.8
14.7
6.8
6.7
3.8 | 1.6
2.2
1.3
1.9
0.9 | 82
77
81
83
86 | 60.9
69.1
51.0
49.0
51.0 | 18.5
15.9
21.7
19.5
10.6 | 43.8
43.8
43.7
43.6
43.2 | 0.000
0.005*
0.003
0.002
0.007 | 0.4
2.9
1.2
0.1
0.1 | 8.5
8.6
8.7
8.7
8.8 | | 26
27
28
29
30 | 29. 792
29. 934
29. 826
29. 818
29. 640 | 31.5
29.5
28.8
25.8
29.7 | 25.7
26.0
14.0
11.3
15.2 | 5.8
3.5
14.8
14.5
14.5 | 28. 2
28. 0
24. 7
18. 6
23. 4 | -11.1
-11.5
-14.9
-21.1
-16.3 | 27.7
26.9
23.8
17.7
22.3 | 26.9
25.0
21.7
15.2
19.8 | 1.3
3.0
3.0
3.4
3.6 | 3. 2
7. 7
3. 7
5. 7
5. 5 | 0.0
0.0
0.8
1.3
1.0 | 94
86
88
85
84 | 44. 4
64. 1
58. 6
61. 2
68. 3 | 24.6
24.6

5.3 | 42.9
42.6
42.6
42.3
42.2 | 0.057
0.029
0.178
0.000
0.000 | 0.0
1.8
0.2
5.4
1.3 | 8.8
8.9
8.9
9.0
9.0 | | 31 | 29.536 | 35.0 | 25.0 | 10.0 | 30.2 | - 9.5 | 29.3 | 27.7 | 2.5 | 5.6 | 1.0 | 90 | 57.0 | 19.3 | 42.0 | 0.100 | 0.3 | 9.1 | | Means | 29.823 | 40.1 | 30. 1 | 10.0 | 35.4 | - 3.2 | 34.0 | 31.7 | 3.8 | 7.4 | 1.3 | 85.5 | 58.2 | 24.6 | 43.6 | Sum
1.632 | 1.4 | 8.4 | | No.of
Col.for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. * Rainfall (Column 16). The amounts entered on January 3 and 22 are derived from hoarfrost. The mean reading of the Barometer for the month was 29.823 in., being 0.022 in. higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR The highest in the month was 54°.2 on January 16; the lowest in the month was 11°.3 on January 29, and the range was 42°.9. The mean of all the highest daily readings in the month was 40°.1, being 3°.0 lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 30°.1, being 4°.1 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 10°.0, being 1°.1 greater than the average for the 65 years, 1841-1905. The mean for the month was 35°.4, being 3°.2 lower than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RE | SULTS | OF THE | METEC | ROLOGICAL | OBSERVATIONS | | | |----------------------------|---------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|---|---|-------------------------------------|--|--|---|--|--|--| | | | | OF THE
IT SKY | | SEL | WIND AS DEDUC
F-REGISTERING | ED FROM | í
Ters | | | | | | | | Pol | aris | δ t
MIN | TRSAE
ORIS | | OSLER'S | | | Robin-
son's | | CLOUDS A | ND WEATHER | | | Month
and
Day | 1on | n of
posure | 1on | n of
posure | General I | Direction | on | ssure
the
re Foot | 1 Move—
the Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | $ ho^{ m h}$ to $ ho^{ m h}$ | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Jan.1
2
3
4
5 | nours 3.9 12.1 5.1 5.4 10.1 | 0.28
0.88
0.37
0.40
0.73 | 3.0
8.6
2.8
1.7
8.5 | 0.22
0.63
0.20
0.13
0.62 | WSW: SW
SSW: W
SSE: S
SSE
SE | S: SSW
Calm; SSW
S: SSE
SE: ESE
ESE: SE | 1bs. 1.6 3.6 3.5 1.5 5.0 | 1bs.
0.05
0.08
0.15
0.12
0.49 | miles
222
208
255
204
316 | bx crrcb bxcm cbcx | b Cicu ff b ff c m bc Acu bc c Stcu Cicu c Ast Stcu | b f bc Cist m b Ci m F c Acu Ci c Ast c Stcu b | lu-ha x c
f b x m
c
bc lu-ha c
b lu-ha | | 6
7
8
9
10 | 0.0
0.0
8.1
12.3
0.0 | 0.00
0.00
0.59
0.90
0.00 | 0.0
0.0
7.9
11.2
0.0 | 0.00
0.00
0.57
0.82
0.00 | SE: ESE
Calm: SE
Calm: SE
SSW
SW: SSW | ese: Calm
ese: Calm
sse: s: Ssw
sw
s: Sse | 3.5
1.6
4.5
1.7
1.6 | 0.21
0.07
0.20
0.09
0.08 | 212
150
200
245
210 | bc
csom
cff
bxmo
bx | c Nbst s s c Nbst m c St f m c Cicu mo b f x bc Cist so-ha | ss c Nbst c Nbst rs c ro c Stcu mo b mo Cist Acu f bc c Nbst ro c | c
roc
rrcb
cfb
crorr | | 11
12
13
14
15 | 8. 2
4. 3
6. 5
0. 8
12. 3 | 0.62
0.33
0.49
0.06
0.93 | 7.5
2.5
5.1
0.0
12.0 | 0.57
0.19
0.38
0.00
0.91 | SSE: SW: S
SW: W
SW: WSW
SW: SSW
SW | S: WSW
SSW: SW
WSW
WSW: SW
SW | 6.6
10.0
21.0
13.5
13.5 | 0.34
0.90
2.00
0.93
1.64 | 293
436
574
459
507 | croc
bcqR
bcqRc
bc
cdo | c rof c Ast
b c Ast Acu
b Frcu Ci y
c Nbst 1r do
c roc Stcu | c Nost rod
c Acu Cu
c gale roqb
c Nost 1doc
c Ast Stcu | rocb
crb
b
c | | 16
17
18
19
20 | 4.2
13.3
5.8
0.6
6.1 | 0.32
1.00
0.45
0.05
0.47 | 3.4
13.3
4.0
0.3
4.9 | 0.26
1.00
0.31
0.02
0.38 | SSW: S
WSW: SW
Calm
E: Calm | E. Calm
E: Calm
E: Calm | 8.0
5.5
2.0
0.2
1.1 | 0.54
0.50
0.13
0.01
0.05 | 336
367
258
114
140 | bw circ bxm cbxc fcw | b c b c Freu b Ci m c St f F f c Freu | b Ci
b c Stcu b
b Ci
F f
c Stcu | bcr
bc
ff
cbcf | | 21
22
23
24
25 | 4.1
2.2
5.3
6.0
1.1 | 0.32
0.17
0.41
0.46
0.09 |
1.3
1.3
4.9
3.0
0.6 | 0.10
0.10
0.38
0.23
0.05 | Calm
Calm: ENE: E
E: NE
NE
Calm | Calm
E: NE
NE
NE
NE | 0.0
1.7
4.0
1.4
2.2 | 0.00
0.05
0.23
0.11
0.09 | 58
147
281
214
170 | cbxf bfxcm csoc cisoc cbx | b c Stcu ff
c x m b c Acu
c b c Stcu
c so c Frcu x
c so c Cist f | F g c Stcu f c 1s, c Stcu c 1s, c Acu c Stcu b x s, c Nbst | ff x
c
c
b c x
c | | 26
27
28
29
30 | 0.3
0.2
8.9
10.7
7.2 | 0.03
0.02
0.69
0.84
0.56 | 0.0
0.1
8.1
9.8
5.4 | 0.00
0.01
0.64
0.77
0.42 | NE
NE: ENE
NNE: NE
ESE
E: ESE | NE
ENE: NE
NE: ESE
E
E: ENE | 11.7
6.6
2.7
1.6
2.6 | 0. 88
0. 65
0. 23
0. 07
0. 22 | 438
363
260
184
227 | cssc
cs _o
cs _o c
cb
bxm | c Nbst iso
c Nbst s so
c Frcu Cu
b Acu
c Cist prha b m | so c Nbst
so c Freu b c
c Nbst so s g c 1so
b
b bc Cist prha c m | c
c
is c
b c b
b m | | 31 | 3.1 | 0.24 | 2.9 | 0.23 | E; ENE | ENE: NE: E | 1.3 | 0.16 | 228 | csis _o m | c so c Acu m | c Ast so s | S So C | | Means | 5.4 | 0.41 | 4.3 | 0.33 | •• | •• | | 0.36 | 267 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | | Ref. | | | | | _ | | | | <u></u> | <u> </u> | | | <u> </u> | The mean Temperature of Evaporation for the month was 34°.0, being 3°.2 lower than The mean Temperature of the Dew Point for the month was 31°.7, being 3°.4 lower than The mean Degree of Humidity for the month was 85.5, being 1.3 less than The mean Blastic Force of Vapour for the month was 0.178 in., being 0.027 in. less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.8. The mean proportion of *Sunshine* for the month (constant sunshine being represented by 1) was 0.170. The maximum daily amount of *Sunshine* was 6.5 hours on January 16. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 88°.1 on January 16; and the lowest reading of the Terrestrial Radiation Thermometer was 5°.3 on January 30. The *Proportions of Wind* referred to the cardinal points were N.10, E.27, S.26, W.20, calm or nearly calm conditions 17, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 21.0 lbs. on the square foot on January 13. The mean daily Horizontal Movement of the Air for the month was 267 miles; the greatest daily value was 574 miles on January 13, and the least daily value was 58 miles on January 21. Rain (0.005 in. or over) fell on 16 days in the month, amounting to 1.632 in., as measured by gauge No.6 partly sunk below the ground; being 0.249 in. less than the average fall for the 65 years, 1841-1905. | υ | 60 | | | | JKEENW | TCH ME | LIEURU | LUGICA | T OBS | EKVAI I | LONS, | 194 | <i>'</i> . | | | | | | |------------------------------------|--|--------------------------------------|--|---|--------------------------------------|--|---|--------------------------------------|--------------------------------------|---|---------------------------------|--|--------------------------------------|---|---|---|---------------------------------|---------------------------------------| | | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | HE MET | EOROLOG | GICAL | OBSER | VATIONS | | | | | | | | BAROMETER | | | Т | EMPERATU | RE | | | | | | | TE | MPERATUR | E | g, ., | | | | Month
and | Hourly
rrected
1 to 32
e1t) | | | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
r Temper
Dew Poi
mperatur | rature
int | Degree of Humidity
(Saturation = 100) | Of Radi | lation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32
Fahrenhelt) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree (Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain colle
No.6, who
surface
above | Sun-
shine | Horizon | | | in. | 0 | 0 | ۰ | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | ٥ | in. | hours | hours | | Feb. 1
2
3
4
5 | 29. 561
29. 262
28. 855
29. 053
29. 556 | 33.3
34.2
36.7
38.5
31.8 | 25.3
28.8
33.4
29.8
28.2 | 8.0
5.4
3.3
8.7
3.6 | 30.7
32.7
35.0
35.6
29.8 | - 8.9
- 6.8
- 4.5
- 3.9
- 9.8 | 29. 5
31. 8
34. 4
35. 1
28. 8 | 27.5
30.4
33.3
34.2
27.0 | 3. 2
2. 3
1. 7
1. 4
2. 8 | 6. 2
6. 2
2. 2
2. 1
5. 4 | 1.3
0.0
0.0
0.0
0.0 | 86
90
94
95
88 | 63.2
37.8
42.3
44.3
42.2 | 23.5
22.0
31.8
29.8
29.2 | 41.8
41.7
41.7
41.7
41.4 | 0.000
0.120
0.295
0.092
0.159 | 0.9
0.0
0.0
0.0
0.0 | 9.1
9.2
9.3
9.3
9.3 | | 6
7
8
9
10 | 29.729
29.616
29.309
29.346
29.496 | 29.2
30.0
30.8
34.8
35.7 | 27.6
27.4
28.2
28.2
28.2
33.1 | 1.6
2.6
2.6
6.6
2.6 | 28.7
28.9
29.7
32.2
34.1 | -10.9
-10.6
- 9.6
- 6.9
- 4.8 | 28.1
27.9
28.8
31.6
33.9 | 27.1
26.2
27.2
30.7
33.5 | 1.6
2.7
2.5
1.5
0.6 | 2.4
4.4
3.3
3.4
1.6 | 0.0
0.5
0.8
0.6
0.0 | 93
87
89
93
98 | 37.2
38.0
46.6
46.8
38.8 | 28. 5
27. 5
26. 1
29. 0
32. 6 | 41.4
41.3
41.1
41.2
41.2 | 0. 247
0.004
0. 120
0. 295
0. 000 | 0.0
0.0
0.0
0.0
0.0 | 9.4
9.5
9.5
9.6
9.6 | | 11
12
13
14
15 | 29.677
29.749
29.756
29.843
30.012 | 33.8
26.9
29.4
32.1
31.8 | 25.0
24.5
25.3
27.7
27.8 | 8.8
2.4
4.1
4.4
4.0 | 28.7
25.5
27.5
29.9
30.0 | -10.1
-13.3
-11.5
- 9.4
- 9.4 | 28.1
24.8
26.9
29.3
29.3 | 27.1
23.3
25.8
28.4
28.2 | 1.6
2.2
1.7
1.5
1.8 | 2. 2
2. 9
2. 7
3. 6
2. 8 | 0.6
0.0
0.8
0.0
0.0 | 93
90
93
93
92 | 32.4
32.2
32.0
35.9
45.0 | 25.1
24.6
25.8
27.7
27.1 | 41.0
40.8
40.8
40.7
40.7 | 0.000
0.000
0.000
0.002
0.002 | 0.0
0.0
0.0
0.0
0.1 | 9. 7
9. 8
9. 8
9. 9
10. 0 | | 16
17
18
19
20 | 30.048
29.858
29.710
29.735
29.593 | 28.7
27.2
29.3
29.7
30.9 | 25.7
25.8
25.1
26.8
26.8 | 3.0
1.4
4.2
2.9
4.1 | 27.5
26.6
27.5
28.6
28.7 | -12.0
-13.0
-12.0
-10.9
-10.8 | 26.8
25.6
26.1
27.5
27.8 | 25.5
23.5
23.2
25.6
26.3 | 2.0
3.1
4.3
3.0
2.4 | 2.7
4.0
6.8
6.7
4.1 | 0.4
2.5
1.7
0.6
0.0 | 91
87
83
86
89 | 36.4
33.8
37.5
49.2
40.8 | 26. 1
25. 4
25. 0
26. 8
26. 2 | 40.6
40.3
40.3
40.2
40.0 | 0.000
0.000
0.000
0.001
0.010 | 0.0
0.0
0.0
0.0
0.0 | 10.0
10.1
10.1
10.2
10.3 | | 21
- 22
- 23
- 24
- 25 | 29. 230
29. 323
29. 743
29. 839
29. 787 | 29.4
28.8
31.1
25.5
36.0 | 24.2
24.5
14.8
9.0
10.0 | 5. 2
4. 3
16. 3
16. 5
26. 0 | 27.3
26.4
25.6
18.4
24.1 | -12.3
-13.3
-14.2
-21.6
-16.0 | 26.4
25.6
24.7
18.0
22.5 | 24.7
23.9
22.7
17.0
18.6 | 2.6
2.5
2.9
1.4
5.5 | 2.7
5.9
7.1
3.2
11.6 | 0.0
1.3
0.6
0.0
0.0 | 88
89
88
93
77 | 37.5
44.3
88.5
27.7
80.9 | 26.3
21.7
11.5
5.7
4.2 | 39.8
39.7
39.7
39.4
39.5 | 0.184
0.029
0.000
0.009
0.500 | 0.0
0.0
5.3
0.0
2.5 | 10.3
10.4
10.5
10.5
10.6 | | 26
27
28 | 29. 633
29. 380
29. 341 | 41.3
37.3
33.4 | 29.1
30.4
28.2 | 12.2
6.9
5.2 | 34.1
33.7
32.1 | - 6.1
- 6.7
- 8.2 | 31.3
31.0
30.1 | 26. 7
26. 8
26. 8 | 7.4
6.8
5.3 | 17.1
14.0
8.1 | 2.7
2.1
1.8 | 72
74
79 | 96. 1
59. 3
46. 5 | 24.6
27.5
24.0 | 39.6
39.3
39.2 | 0.000
0.000
0.011 | 7.6
0.1
0.0 | 10.7
10.7
10.8 | | Means | 29. 573 | 32.1 | 25.7 | 6.3 | 29.3 | -10.3 | 28.3 | 26.5 | 2.8 | 5.2 | 0.7 | 88.2 | 46.2 | 24.5 | 40.6 | Sum
1.569 | 0.6 | 9,9 | | | | | | | | | | | | | | | | | | E . | | . , | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air, and Evaporation (Column 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences
(Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.573 in., being 0.236 in. lower than the average for the 65 years, 1841-1905. ### TEMPERATURE OF THE AIR No. of Col. for Ref. The highest in the month was 41°.3 on February 26; the lowest in the month was 9°.0 on February 24; and the range was 32°.3. The mean of all the nighest daily readings in the month was 32°.1, being 12°8 lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 25°.7, being 9°.0 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 6°.3, being 3°.9 less than the average for the 65 years, 1841-1905. The mean for the month was 29°.3, being 10°.3 lower than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RE | SULTS | OF THE | METEC | OROLOGICAL (| DBSERVATIONS | | | |-----------------------------|-----------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--|--|---------------------------------|--------------------------------------|-------------------------------------|---|---|--|--| | | , | | OF THE
TSKY | | SEL | WIND AS DEDUC
F-REGISTERING | | | | | | | | | | Pol | aris | δ
MIN | URSÆ
IORIS | | OSLER'S | | | Robin-
son's | | CLOUDS AN | D WEATHER | | | Month
and
Day
1947 | 1on | n of
posure | .1on | tion of
Exposure | General 1 | Direction | on | ssure
the
e Foot | 1 Move-
the Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fracti
Total Ex | A. M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | | hours | | hours | | | | lbs. | lbs. | miles | | | | | | Feb.1 2 3 4 5 | 2.3
0.0
0.0
0.1
0.0 | 0.19
0.00
0.00
0.01
0.00 | 1.8
0.0
0.0
0.0
0.0 | 0.15
0.00
0.00
0.00
0.00 | ese: e
ese
e: ese
e
ne | E:ESE
SE:E
E
ENE:NE
NE | 2.5
4.3
2.3
4.6
1.6 | 0.08
0.34
0.17
0.22
0.20 | 187
276
276
275
323 | cbcm
c
cd _o m
od _o rof
oss _o | c m b c Stcu Cist
c soso rs Nbst
do rs r m Nbst
o St f m
c Stcu Ast 1s | c Stcu so c
rs c Nbst
rs o rm f
o St m
c Nbst is | c
c
o
os _o s _o
s _o ss | | 6
7
8
9
10 | 0.0
2.5
0.0
0.0
0.0 | 0.00
0.20
0.00
0.00
0.00 | 0.0
1.3
0.0
0.0
0.0 | 0.00
0.11
0.00
0.00
0.00 | ENE: E
ESE
E
NE: Calm
E | e: ese
e: ese
ene
e
ene | 0.7
3.6
8.8
0.7
2.7 | 0.05
0.21
1.24
0.03
0.24 | 187
251
486
144
279 | ss m
c m _o
c m _o
ss
fe fe | ss c Nbst m
c o St so mo
c Stcu
ss o St so fe fe
fe fe | s s _o c Nbst m _o
o St m _o
c Stcu
o St fe fe
fe o St m | c mo
c mo
o ss
fe fe
o mo | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0
0.0 | 0.00
0.00
0.00
0.00
0.00 | 0.0
0.0
0.0
0.0
0.0 | 0.00
0.00
0.00
0.00
0.00 | ENE
ENE: NE
NE
NE: ENE | ENE: NE
NE
NE: NE
ENE: NE | 4.0
2.5
0.4
0.6
2.9 | 0.48
0.25
0.07
0.04
0.26 | 378
305
200
187
330 | omocmocmocm | o c St mo
c Stcu mo
c Stcu mo
c Stcu m
c Stcu | c St mo
c St m
so c St m
c Stcu m
c Stcu | c mo
c mo
c m
c mo do c | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0
0.0 | 0.00
0.00
0.00
0.00
0.00 | 0.0
0.0
0.0
0.0
0.0 | 0.00
0.00
0.00
0.00
0.00 | NE
ENE
NE: NE
NE: Calm | NE: ENE
NE: ENE
NNE: NE
ENE: E | 3.0
2.0
3.5
6.5
1.5 | 0.34
0.23
0.30
0.32
0.09 | 374
307
336
329
190 | cm _o
cm _o
cm _o
c | c Nbst 1s _c m _o
c Nbst 1s _o
c Stcu
c Stcu
c Nbst s _o s _o m | c Nbst
c St
c Stcu
c Nbst 1s _o
Nbst 1s _o | c c c c c | | 21
22
23
24
25 | 0.0
4.9
11.0
10.8
0.1 | 0.00
0.45
1.00
0.98
0.01 | 0.0
3.8
3.4
3.7
0.0 | 0.00
0.35
0.31
0.33
0.00 | E: ENE
NNE
NNW: N: NNE
Calm
Calm | ENE: NNE
NNE: N
NNE: Calm
Calm
ESE: SE | 5.2
1.6
0.4
0.0
1.2 | 0.44
0.18
0.03
0.00
0.03 | 368
276
161
83
126 | cm
c
c
b.fx
ffx | c Nbst is m c.o Nbst s is c so c Stcu b Cu bf g f x ff x b Ci | Nost 1s m ss
so c Stcu so
b c Cu b
ff x
b c Cist So-ha c | ss c
c
b f
ff x
c | | 26
27
28 | 1.1
0.0
8.7 | 0.10
0.00
0.79 | 0.0
0.0
8.3 | 0.00
0.00
0.76 | SSE:S
Calm
NNW:NW | S
N
NNW | 6.3
1.2
4.0 | 0.69
0.07
0.52 | 351
153
350 | c
cm
cis _o m _o | c b Ci y
c Ast m
c Nbst 1s _o g m _o | b bc Ci y
c bc Cist so-ha mo
c Ast 1so | bc lu-ha c
bc c
1s _o c | | Means | 1.5 | 0.13 | 0.8 | 0.07 | •• | •• | •• | 0. 25 | 267 | | | | | | No. of
Col.for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 28°.3, being 9°.4 lower than The mean Temperature of the Dew Point for the month was 26°.5, being 8°.5 lower than The mean Degree of Humidity for the month was 88.2, being 4.6 greater than The mean Elastic Force of Vapour for the month was 0.140 in., being 0.064 in. less than the average for the 65 years, 1841-1905. The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 9.0. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.059. The maximum daily amount of Sunshine was 7.6 hours on February 26. The highest reading of the Solar Radiation Thermometer was 96°.1 on February 26; and the lowest reading of the Terrestrial Radiation Thermometer was 4°.2 on February 25. The *Proportions of Wind* referred to the cardinal points were N.29, E.51, S.6, W.2, calm or nearly calm conditions 12, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 8.8 lbs. on the square foot on February 8. The mean daily Horizontal Movement of the Air for the month was 267 miles; the greatest daily value was 486 miles on February 8, and the least daily value was 83 miles on February 24. Rain (0.005 in. or over) fell on 11 days in the month, amounting to 1.569 in., as measured by gauge No.6 partly sunk below the ground; being 0.089 in. greater than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | HE MET | EOROLOG | ICAL (| OBSER | VATIONS | | | | | | |----------------------------|---|--------------------------------------|--------------------------------------|-------------------------------------|---|--|--------------------------------------|---|--------------------------------------|---|---------------------------------|-----------------------------|--|--------------------------------------|---|---|---------------------------------|--------------------------------------| | | BAROMETER | | | T | EMPERATU | RE | | | | | | | TE | MPERATUR | E | 80.50 | | | | Month
and | Hourly
rrected
1 to 32°
e1t) | | , | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the A1
and | rence be
r Temper
Dew Poi
mperatur | ature
nt | of Humidity
ation = 100) | Of Radi | ation | Of the
Earth
4 ft. | cted in Gaug
se receiving
is 5 inches
he Ground | Daily
Dura-
tion
of | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32º
Fabrenhelt) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree (Satura | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Sun-
shine | Horizon | | | in. | ۰ | 0 | 0 | 0 | 0 | ٥ | 0 | ۰ | 0 | 0 | | ٥ | 0 | 0 | in. | hours | hours | | Mar.1
2
3
4
5 | 29.628
29.798
29.845
29.606
29.238 | 35.7
39.0
38.0
34.7
32.5 | 23.7
23.9
21.7
29.8
30.7 | 12.0
15.1
16.3
4.9
1.8 | 30.2
31.0
29.9
32.0
31.9 | -10.2
- 9.4
-10.6
- 8.7
- 9.0 | 28.3
28.9
28.0
30.3
31.2 | 24.9
25.1
24.6
27.5
30.1 | 5.3
5.9
5.3
4.5
1.8 | 11.5
17.0
13.8
9.0
2.1 | 2.4
1.7
0.0
0.0
0.0 | 78
77
78
82
92 | 87.3
65.3
89.5
50.4
42.5 | 19.4
16.5
11.8
27.7
30.9 |
39.3
39.1
39.1
38.9
38.8 | 0.000
0.000
0.000
0.438
0.349 | 6.5
6.2
3.8
0.0
0.0 | 10.9
10.9
11.0
11.1
11.1 | | 6
7
8
9
10 | 29.315
29.631
29.753
29.909
29.432 | 33.0
35.4
40.2
47.5
44.6 | 29.0
21.6
23.4
31.0
32.8 | 4.0
13.8
16.8
16.5
11.8 | 30.6
27.8
33.5
38.4
38.8 | -J0.4
-13.2
- 7.6
- 2.6
- 2.1 | 29.8
26.6
31.7
35.0
38.4 | 28. 5
24. 3
28. 9
29. 2
37. 9 | 2. 1
3. 5
4. 6
9. 2
0. 9 | 4.4
8.7
11.4
18.7
3.5 | 1.0
0.8
2.0
1.6
0.0 | 91
85
81
68
96 | 44.6
62.8
63.9
89.5
55.9 | 26.5
18.6
19.2
27.0
31.8 | 38. 8
38. 7
38. 7
38. 7
38. 4 | 0.110
0.000
0.023
0.045
0.755 | 0.0
2.0
1.2
7.6
0.0 | 11.2
11.3
11.3
11.4
11.4 | | 11
12
13
14
15 | 29. 405
29. 814
29. 185
29. 373
29. 921 | 44.0
36.3
52.2
46.6
35.5 | 32.0
30.6
36.3
29.5
25.1 | 12.0
5.7
15.9
17.1
10.4 | 35.6
32.2
46.8
36.4
31.0 | - 5.4
- 8.9
+ 5.5
- 5.1
-10.7 | 34.7
31.0
45.9
34.8
29.9 | 33.1
29.0
44.8
32.1
28.2 | 2.5
3.2
2.0
4.3
2.8 | 4.4
5.0
4.4
6.1
8.8 | 0.6
1.3
0.9
0.9
0.0 | 91
87
93
84
87 | 42.0
40.8
83.9
49.6
47.4 | 31.6
30.6
35.7
23.5
18.5 | 38. 2
38. 2
38. 4
38. 3
38. 4 | 0.288
0.296
0.424
0.046
0.174 | 0.0
0.0
0.1
0.0
0.0 | 11.5
11.6
11.6
11.7
11.8 | | 16
17
18
19
20 | 29.362
29.543
29.362
29.153
29.310 | 57.0
55.7
56.0
48.6
52.1 | 35.5
39.2
42.9
44.6
42.9 | 21.5
16.5
13.1
4.0
9.2 | 46. 2
46. 7
48. 6
46. 5
46. 7 | + 4.3
+ 4.7
+ 6.6
+ 4.6
+ 4.8 | 42.8
43.7
45.7
44.7
43.6 | 38.3
40.0
42.2
42.5
39.7 | 7.9
6.7
6.4
4.0
7.0 | 14.6
12.3
15.1
5.9
15.1 | 0.8
1.9
1.6
2.2
2.6 | 74
77
78
86
76 | 102.0
113.9
106.8
66.0
101.6 | 34.5
31.8
31.7
39.1
41.0 | 38. 7
38. 8
39. 0
39. 3
39. 7 | 0.284
0.020
0.010
0.133
0.030 | 1.9
3.7
3.7
0.1
1.3 | 11.8
11.9
12.0
12.0
12.1 | | 21
22
23
24
25 | 29. 205
29. 129
29. 039
29. 276
29. 803 | 53.7
54.9
54.3
45.7
52.6 | 44.7
42.7
41.5
34.8
32.4 | 9.0
12.2
12.8
10.9
20.2 | 48.7
47.6
48.0
40.2
41.4 | + 6.8
+ 5.6
+ 5.8
- 2.2
- 1.3 | 46.8
45.4
44.6
38.5
37.6 | 44.7
42.9
40.3
36.1
31.5 | 4.0
4.7
7.7
4.1
9.9 | 12.3
11.3
16.9
8.0
20.3 | 0.8
1.6
3.5
2.4
1.7 | 86
83
74
85
67 | 88.5
102.8
115.7
53.8
110.5 | 32.0
26.2
35.0
30.0
27.0 | 40.0
40.4
40.8
41.0
41.3 | 0.135
0.216
0.040
0.031
0.000 | 1.0
2.0
3.4
0.0
7.0 | 12.2
12.2
12.3
12.4
12.4 | | 26
27
28
29
30 | 29. 599
29. 393
29. 264
28. 908
28. 961 | 52.8
53.9
58.0
54.9
52.4 | 38.8
41.8
45.7
46.0
42.2 | 14.0
12.1
12.3
8.9
10.2 | 44. 2
47. 5
50. 8
49. 3
48. 0 | + 1.2
+ 4.2
+ 7.1
+ 5.2
+ 3.5 | 40.0
45.7
48.8
48.4
45.8 | 33.5
43.6
46.6
47.5
43.3 | 10.7
3.9
4.2
1.8
4.7 | 21.0
6.5
7.6
3.3
9.6 | 4.8
1.0
1.1
0.0
1.1 | 66
86
86
93
83 | 95.0
81.5
92.0
80.7
88.1 | 30.9
38.3
40.7
43.7
36.3 | 41.4
41.6
41.7
41.9
42.3 | 0.070
0.145
0.115
0.830
0.111 | 0.7
0.1
0.0
0.0
0.5 | 12.5
12.6
12.6
12.7
12.7 | | 31 | 29.145 | 46.4 | 41.5 | 4.9 | 44.0 | - 0.9 | 42.8 | 41.3 | 2.7 | 5.4 | 0.7 | 90 | 58.1 | 35.6 | 42.6 | 0.098 | 0.0 | 12.8 | | Means | 29.429 | 46.6 | 34.8 | 11.8 | 40.3 | - 1.6 | 38.4 | 35.6 | 4.8 | 10.1 | 1.3 | 82.6 | 76.5 | 29.8 | 39.7 | Sum
5.216 | 1.7 | 11.8 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.429 in., being 0.324 in. lower than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR The mean of all the hignest daily readings in the month was 46°.6, being 2°.6 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 11°.8, being 1°.8 less than the average for the 65 years, 1841-1905. The mean for the month was 40°.3, being 1°.6 lower than the average for the 65 years, 1841-1905. | | T | | | | TABLE XVII. | | _ | | METEC | ROLOGICAL | OBSERVATIONS | | | |-----------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--|---|--------------------------------------|--------------------------------------|-------------------------------------|---|---|---|--| | | ` | RECORD
NIGH | OF THE
T SKY | | SEL | WIND AS DEDUC
F-REGISTERING | LD FROM | TERS | | | | | | | | Pol | aris | δι
MIN | URSÆ
IORIS | | osler's | | | Robin-
son's | | CLOU | DS AND WEATHER | | | Month
and
Day
1947 | cion | n of
posure | 1on | n of
posure | General D | irection | on | ssure
the
re Foot | ul Move—
the Air | · | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A. M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | \circ \circ \circ \circ \circ | e ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Mar.1 | hours
10.5
10.7 | 0.98
1.00 | hours
10.5
9.8 | 0.98
0.91 | NW: WNW
WSW: W | MNW: W: WSW | 1bs.
4.6
0.3 | 1bs.
0.47
0.04 | miles
354
171 | b
b x m | b mo b Ci
b bc Stcu y | b Ci be Steu be Steu b y | b x m
b ff x | | 3
4
5 | 3.7
0.0
0.0 | 0.34
0.00
0.00 | 2.0
0.0
0.0 | 0.18
0.00
0.00 | Calm
E:ENE
ENE | E: ENE
ENE
ENE: NE | 1.3
10.7
5.8 | 0.13
1.19
1.05 | 190
431
429 | b ff x
c | b f b Cist so-ha
c Ast
c Nost 1h | b bc Cist Ci so-ha
c Nbst so ss
h c Nbst h rs | bc hu-ha
ss c
n rs ss | | 6
7
8
9 | 2.6
5.5
4.1
0.0
0.0 | 0.24
0.51
0.40
0.00
0.00 | 0.5
4.3
3.9
0.0
0.0 | 0.04
0.40
0.38
0.00
0.00 | nne
nnw:Calm
SSW
SW
ESE:Calm | N
Calm: S
SW: WSW
S: SSE: SE
Calm: Var. | 2.1
1.9
2.0 | 0.14
0.07
0.09 | 273
130
244
181
157 | ss c
c b x
c
c b f
rs rr o | c Ast Steu b f be Freu m c Nost ir s b f be Freu Ci o St ff | c Stou be c Stou b m c be c Frou be Acu Ci y c c Nbst do F rr f | c hu-ha b x c c r s rr o r f | | 11
12
13
14
15 | 0.0
0.0
0.0
10.3
0.0 | 0.00
0.00
0.00
1.00
0.00 | 0.0
0.0
0.0
9.3
0.0 | 0.00
0.00
0.00
0.91
0.00 | Calm: NNW
ENE: E
S: SSW
WSW: N: NNE
Calm | NNW: N: NNE
ESE: SE
SSW
NNE
SSE | 4. 2
1. 0
3. 5
1. 5
3. 3 | 0.22
0.08
0.25
0.14
0.19 | 270
222
322
257
200 | rr f c
c m _o
c rr c
c d _o
b x c f | c Stcu mo
c Stcu
c rr c Nbst ir
c n s c Nbst
c Stcu f c | c Stou mo
c Nost ro ro
c Nost ir do
c Nost
c Stou so s | c mo
ro rr c
c ir do
b
ss rr | | 16
17
18
19
20 | 7. 4
1. 3
1. 8
0. 0
0. 0 | 0.76
0.14
0.19
0.00
0.00 | 7.0
1.1
1.3
0.0
0.0 | 0.72
0.11
0.14
0.00
0.00 | S: SSW
SW: SSW
Calm: SSW
SSW
WNW | SSW: SW: WSW
S: SSE: ESE
SW: SSW
SW: WSW
W: WSW: SW | 35.0
15.0
9.0
9.0
3.8 | 3.07
0.50
0.62
0.65
0.22 | 627
285
344
403
301 | rr c
b
c b c
bc c
c | c Cist Acu so-ha
c Ast Frcu
c Frcu Ci
c r c r c Nbst
c bc Stcu Frcu | c Cist so-ha c r c gale
c b c Cu Acu
bc c Frst Ci
c Nbst ir bc
c Ast Stcu | c gale b
c r do
c p bc
bc c
c ir | | 21
22
23
24
25 | 9.1
3.7
8.2
9.3
4.5 | 0.94
0.40
0.89
1.00
0.49 | 8.5
3.0
8.1
9.3
2.6 | 0.88
0.33
0.87
1.00
0.28 | SSW: SW
SSW
SW: W
SSW: W | SW
SW: SSW
SW: SSW
WNW: NNW
SW: SSW | 9.0
7.0
16.0
9.7
4.3 | 0.82
0.77
1.97
0.60
0.26 | 419
421
563
376
302 | c ir
b x c
b c p
b c
b x | ir c Nbstr
c
Nbstrro
c p bc Frcu
c ro do c Nbst
b bc Cu y | ro c Frst po
ro be Ci Acu so-ha c p
be c Nbst p c
c Stcu ro c rs
be c Ci Cu y | b c r b c b c b bc b | | 26
27
28
29
30 | 0.0
2.0
0.0
0.0
4.6 | 0.00
0.22
0.00
0.00
0.53 | 0.0
1.1
0.0
0.0
4.3 | 0.00
0.12
0.00
0.00
0.49 | SSW
SSE: S
S: Calm
E: Calm
SSW: SW | S
S: SSW
Calm: E
Calm: S
SSW | 6.7
1.3
0.4
0.7
4.7 | 0.82
0.09
0.00
0.02
0.49 | 371
218
141
151
351 | bc
cir
cbcd
crcm
Riro | c do c Stcu y ir c Ast rr do r Nost c Nost ro do ro ir c Frcu | c Stou y c ro
c Stou Frst 1ro
c Stou Acu po
Nost r RR
c Stou Frou bo | r c
c rr c
c d _o
RR
b c | | 31 | 5.0 | 0.57 | 3.3 | 0.38 | S: SSW | SW: SSW | 2.0 | 0.10 | 242 | С | c Nost rorro | c Nost ido r | r c lu-ha bo | | Means | 3.4 | 0.34 | 2.9 | 0.29 | • • | •• | | 0.52 | 301 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 38°.4, being 1°.0 lower than The mean Temperature of the Dew Point for the month was 35°.6, being the same as The mean Degree of Humidity for the month was 82.6, being 4.5 greater than The mean Elastic Force of Vapour for the month was 0.208 in., being 0.001 in. less than the average for the 65 years, 1841-1905. The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.9. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.144. The maximum daily amount of Sunshine was 7.6 hours on March 9. The highest reading of the Solar Radiation Thermometer was 115°.7 on March 23; and the lowest reading of the Terrestrial Radiation Thermometer was 11°.8 on March 3. The *Proportions of Wind* referred to the cardinal points were N.12, E.15, S.38, W.22, calm or nearly calm conditions 13, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 35.0 lbs. on the square foot on March 16. The mean daily Horizontal Movement of the Air for the month was 301 miles; the greatest daily value was 627 miles on March 16, and the least daily value was 130 miles on March 7. Rain (0.005 in. or over) fell on 26 days in the month, amounting to 5.216 in., as measured by gauge No.6 partly sunk below the ground; being 3.696 in. greater than the average fall for the 65 years, 1841-1905. | | | | | TABLE | xvII. | - DAIL | Y RESUL | TS OF T | HE MET | EOROLOG | GICAL | OBSER | VATIONS | | | | | | |----------------------------|---|---|---|---|--------------------------------------|--|--------------------------------------|---|--|---|--------------------------------------|-----------------------------|---|---|---|---|--------------------------------------|--------------------------------------| | | BAROMETER | | | 7 | TEMPERATU | RE | | | | | | | TE | MPERATUR | Œ | | | | | Month
and | Hourly
wrected
1 to 32°
elt) | | 1 | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
r Temper
Dew Poi
mperatur | ature
nt | of Humidity
ation = 100) | Of Radi | lation | Of the
Earth
4 ft. | ted in Gauge
e receiving
s 5 inches
ne Ground | Daily
Dura-
tion
of | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32º
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree of
(Saturati | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Sun-
shine | Horizon | | | in. | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | in. | hours | hours | | Apr.1
2
3
4
5 | 29. 277
29. 371
29. 372
29. 380
29. 897 | 56. 2
43. 4
47. 9
44. 8
50. 9 | 39. 2
36. 3
36. 2
38. 2
35. 8 | 17.0
7.1
11.7
6.6
15.1 | 46.9
41.0
41.6
41.5
44.3 | + 1.6
- 4.7
- 4.4
- 4.7
- 2.0 | 43.5
40.4
40.6
39.8
41.4 | 39. 2
39. 5
39. 3
37. 4
37. 4 | 7.7
1.5
2.3
4.1
6.9 | 17.5
2.8
7.7
12.9
14.4 | 0.4
0.0
0.8
1.7
2.0 | 74
95
91
85
76 | 129.6
54.2
73.7
70.7
91.5 | 27.7
30.0
35.6
32.0
28.5 | 42.8
42.8
43.0
43.0
43.3 | 0.000
0.260
0.082
0.257
0.215 | 5. 5
0. 0
0. 0
1. 6
2. 6 | 12.9
12.9
13.0
13.1
13.2 | | 6
7
8
9
10 | 29.677
29.815
29.671
30.231
30.487 | 53.6
59.6
52.2
48.8
59.2 | 46.7
44.7
39.6
34.4
30.3 | 6.9
14.9
12.6
14.4
28.9 | 49.5
50.9
47.7
42.0
44.8 | + 3.2
+ 4.6
+ 1.6
- 4.0
- 1.1 | 46.1
45.8
44.1
37.3
39.6 | 42.0
39.4
39.5
29.4
31.5 | 7.5
11.5
8.2
12.6
13.3 | 13.2
27.3
14.9
20.0
24.5 | 4. 2
2. 7
2. 7
3. 7
0. 0 | 75
65
73
61
59 | 84.8
114.4
107.7
107.6
118.1 | 41.0
39.0
34.0
25.5
20.2 | 43. 2
43. 3
43. 4
43. 7
43. 8 | 0.009
0.030
0.025
0.000
0.000 | 0.0
5.4
1.6
6.9
10.3 | 13.2
13.3
13.3
13.4
13.5 | | 11
12
13
14
15 | 30.385
30.326
30.231
30.109
30.186 | 61.4
61.4
63.7
66.7
52.6 | 33.2
37.6
37.7
42.2
49.3 | 28. 2
23. 8
26. 0
24. 5
13. 3 | 47.3
49.0
50.0
54.0
54.8 | + 1.5
+ 3.1
+ 3.9
+ 7.6
+ 8.0 | 41.3
43.1
44.7
47.4
51.2 | 32.3
34.9
37.8
39.5
47.7 | 15.0
14.1
12.2
14.5
7.1 | 30.6
28.4
23.3
33.3
13.9 | 0.8
2.1
2.1
5.4
2.7 | 55
58
63
58
76 | 124.1
118.6
124.1
131.2
122.6 | 23. 1
25. 1
22. 9
25. 4
39. 0 | 43.8
43.9
44.0
44.2
44.4 | 0.000
0.000
0.000
0.000
0.000 | 11.4
6.5
10.4
8.5
4.8 | 13.5
13.6
13.7
13.7
13.8 | | 16
17
18
19
20 | 30.068
29.983
29.901
29.796
29.684 | 71.9
64.0
62.0
57.8
57.6 | 42.5
42.1
41.9
43.2
41.2 | 29.4
21.9
20.1
14.6
16.4 | 57.7
51.8
50.8
50.1
49.9 | +10.5
+ 4.2
+ 2.8
+ 1.8
+ 1.4 | 51.5
47.4
47.1
47.1
47.1 | 45. 2
42. 4
42. 8
43. 6
43. 9 | 12.5
9.4
8.0
6.5
6.0 | 29.9
20.3
15.2
12.0
11.2 | 0.7
2.4
2.4
1.8
1.1 | 63
70
74
79
80 | 133.7
120.6
123.7
105.5
106.0 | 29. 4
29. 5
38. 4
35. 1
31. 5 | 44.8
45.0
45.3
45.3
45.7 | 0.000
0.000
0.000
0.000
0.032 | 11.7
8.5
8.6
0.6
1.7 | 13.9
13.9
14.0
14.1
14.1 | | 21
22
23
24
25 | 29. 730
29. 559
29. 509
29. 863
29. 959 | 56.9
59.3
52.4
59.0
67.6 | 45.9
45.3
42.4
45.7
42.1 | 11.0
14.0
10.0
13.3
25.5 | 51.8
50.8
47.9
51.7
56.3 | + 3.1
+ 2.1
- 0.7
+ 3.1
+ 7.7 | 47.5
46.5
44.7
45.1
50.2 | 42.6
41.5
40.7
36.4
43.6 | 9. 2
9. 3
7. 2
15. 3
12. 7 | 13.9
18.4
14.3
28.3
23.4 | 3.1
2.2
2.1
3.9
1.3 | 70
70
76
56
63 | 105.1
123.0
73.2
123.3
129.0 | 39.5
39.0
34.9
39.2
32.0 | 45.8
45.9
45.8
46.2
46.3 | 0.000
0.105
0.213
0.000
0.000 | 4.6
5.5
2.2
10.2
6.5 | 14.2
14.2
14.3
14.4
14.4 | | 26
27
28
29
30 | 30.096
29.949
29.844
29.887
29.606 | 63.3
61.9
59.8
63.5
48.4 | 44.5
35.5
47.2
41.4
41.5 | 18.8
26.4
12.6
22.1
6.9 | 53.8
51.1
52.4
51.3
44.5 | + 5.2
+ 2.4
+ 3.6
+ 2.3
- 4.6 | 46.7
44.7
45.9
45.7
42.4 | 37.9
36.2
37.7
38.6
39.6 | 15.9
14.9
14.7
12.7
4.9 | 26.4
30.8
29.6
26.8
8.5 | 6. 2
2. 2
5. 6
3. 3
2. 8 | 54
57
57
62
83 | 127.6
120.1
129.4
133.5
87.5 | 36.0
24.9
39.0
31.9
35.8 | 46.3
46.3
46.7
46.9
46.8 | 0.000
0.000
0.018
0.109
0.158 | 10.2
6.1
4.3
9.1
0.8 | 14.5
14.6
14.6
14.7
14.7 | | Means | 29.862 | 57.9 | 40.8 | 17.1 | 49.2 | + 2.0 | 44.9 | 39.3 | 9.9 | 19.8 | 2.4 | 69.3 | 110.5 | 32.2 | 44.7 | Sum
1.513 | 5.5 | 13.8 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and
11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.862 in., being 0.107 in. higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR The highest in the month was 71°.9 on April 16; the lowest in the month was 30°.3 on April 10; and the range was 41°.6. The mean of all the highest daily readings in the month was 57°.9, being 1°.8 higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 40°.8, being 1°.3 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 17°.1, being 0°.5 greater than the average for the 65 years, 1841-1905. The mean for the month was 49°.2, being 2°.0 higher than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RE | SULTS | OF THE | METEO | ROLOGICA | L OBSERVATIONS | | | |-----------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---|---|--|---|--|--|---|---|---| | | , | | OF THE
ISKY | | SEL | WIND AS DEDUC
F-REGISTERING | | | | | | | | | | Pol | aris | δ t
MIN | JRSÆ
ORIS | | OSLER'S | | | Robin-
son's | | CLOUDS A | AND WEATHER | | | Month
and
Day
1947 | 1on | n of
posure | 1on | n of
posure | General I | Direction | on | ssure
the
re Foot | 1 Move—
he Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A. M. | P.M. | Greatest | Measures | Horizontal Move-
ment of the Air | o ^h to e ^h | e ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Apr. ₁ 2 3 4 5 | nours 1.9 0.0 0.2 0.0 0.0 | 0.22
0.00
0.02
0.00
0.00 | 1.6
0.0
0.2
0.0 | 0.18
0.00
0.02
0.00
0.00 | SSW: SW
NNE: ENE
ENE: E
NE: N
Calm: SSW | SW: SSW
ENE
E
N
SSW: SW | 1bs. 0.4 2.7 2.6 7.0 20.5 | 1bs. 0.03 0.06 0.14 0.74 2.13 | miles
167
189
234
354
476 | bc
cf
ddomf
crr | b bc Cumb Cu
f c St 1do m
d do f c Stcu
c St
b bc Cist so-ha c Ast | c Cumb Frou y c Nost do d rr m c Ast Acu ro c r c Stou b c Ast Nost q r | bc w rr d d _o m rr c c c c q gale r c | | 6
7
8
9
10 | 7.9
0.0
4.7
8.5
8.5 | 0.93
0.00
0.56
1.00 | 6.5
0.0
4.7
8.5
8.5 | 0.76
0.00
0.56
1.00 | SW: WSW
WSW: W
SW: WSW
NNW: N
SE: Calm | SW: WSW
WSW: SW
WSW: W: NNW
N: NNE: Calm
SW: Calm | 11.0
18.0
22.0
2.7
0.8 | 1. 98
2. 41
2. 82
0. 19
0. 01 | 548
549
591
219
127 | c
bc
rroc
cb
bx | c Nbst
c Cist Cicu y q
c ro c b Frcu gale
c Stcu y
b zo y | c Nost ro c
c Acu Ast y q
b Frcu gale c Ast y
c Stcu b y
b zo y | cb
crro
bcp
bx | | 11
12
13
14
15 | 8.5
8.0
7.4
0.6
8.0 | 1.00
1.00
0.93
0.07
1.00 | 8.5
8.0
7.4
0.3
8.0 | 1.00
1.00
0.92
0.04
1.00 | Calm
Calm: NE
Calm
SW: WSW
WSW: SW | SE: Calm
NE: E
E: Calm: SSW
W: WSW
SW | 0.6
2.7
0.6
3.4
3.0 | 0.03
0.07
0.03
0.27
0.21 | 105
149
109
284
283 | b x
b x z
b x
b bc x
c | b y c Acu Ci z b z y c Acu bc Ci y c bc Frcu | b y bc Ci b z y b bc z ₀ y b bc Ci y b c Ci y bc c Frcu Stcu | b
bc b
bc c
c b | | 16
17
18
19
20 | 7.9
2.0
1.3
7.3
6.4 | 0.99
0.25
0.16
1.00
0.89 | 7.9
1.7
1.3
7.3
5.9 | 0.99
0.21
0.16
1.00
0.81 | SW: Calm: S
Calm: NE
E
SW
S: SSW | SSW: SW
NE: E
ESE: SW
SSW: SW
SSW: SW | 2.7
2.4
1.8
2.5
13.0 | 0.10
0.18
0.20
0.20
1.15 | 210
223
238
233
428 | bw
bw
cw
cbc
b | by bzy cb cCuStcu bcStcu | b bc Cist Cu so-ha y
b y bc Stcu
b bc Frcu
c Nbst 1roc bc
c Nbst ro | bc b
bc b c
c
b
r _o r _o b | | 21
22
23
24
25 | 5.5
7.3
3.3
5.4
5.4 | 0.75
1.00
0.46
0.74
0.75 | 5.5
7.3
2.3
3.6
4.3 | 0.75
1.00
0.31
0.50
0.59 | SW
SW: SSW
WSW
SSW | SW
SW
SSW: SW
WSW: SW
SSW: SW: W | 27. 5
18. 3
34. 5
20. 5
4. 4 | 2. 57
1. 90
3. 27
1. 86
0. 53 | 635
505
675
560
309 | b c q
b w
bc b q
b c | b c Stcu Frcu
c P c p _o c Nbst Frcu
c Nbst ir q
b c p _o bc Ci Cu y
bc Ci Cist so-ha | c Ast Frcu gale p bc Frcu c q y c rr gale bc y q bc Ci Cu so-ha y bc Ci so-ha b y | c b q
c b
bc
bc b | | 26
27
28
29
30 | 6.7
1.7
6.0
0.6
2.1 | 1.00
0.25
0.89
0.09
0.31 | 6.7
1.2
5.7
0.5
1.9 | 1.00
0.18
0.85
0.08
0.28 | nw: nnw
Wsw: sw
Wsw: w
W: Wsw
Wsw: nnw | WBW: SW
SW: WNW
SW
NNW | 1.6
8.6
10.6
9.4
14.0 | 0.15
0.73
1.47
0.62
1.03 | 173
351
499
383
402 | bc
bx
c
b
cir _o | c bc Frcu b y b c Ast y c p bc Cu y b Ci Acu y c Nbst ir | b Acu y c bc Ast Cist c y bc Freu Cu c y b bc Acu c r c Cunb Ci p P | b c do c bc b c c f r roc c bc c | | Means | 4.4 | 0.58 | 4.2 | 0.54 | •• | •• | | 0.90 | 340 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 44°.9, being 1°.0 higher than The mean Temperature of the Dew Point for the month was 39°.3, being 0°.3 lower than The mean Degree of Humidity for the month was 69.3, being 5.2 less than The mean Elastic Force of Vapour for the month was 0.241 in., being 0.003 in. less than the average for the 65 years, 1841-1905. The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 5.9. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.401. The maximum daily amount of Sunshine was 11.7 hours on April 16. The highest reading of the Solar Radiation Thermometer was 133°.7 on April 16; and the lowest reading of the Terrestrial Radiation Thermometer was 20°.2 on April 10. The Proportions of Wind referred to the cardinal points were N.9, E.13, S.30, W.34, calm or nearly calm conditions 14, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 34.5 lbs. on the square foot on April 23. The mean daily Horizontal Movement of the Air for the month was 340 miles; the greatest daily value was 675 miles on April 23, and the least daily value was 105 miles on April 11. Rain (0.005 in. or over) fell on 13 days in the month, amounting to 1.513 in., as measured by gauge No.6 partly sunk below the ground; being 0.053 in. less than the average fall for the 65 years, 1841-1905. | <u> </u> | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | HE MET | COROLOG | ICAL (| OBSER | VATIONS | | | | | | |----------------------------|---|--------------------------------------|--------------------------------------|--|---|--|--------------------------------------|---|-------------------------------------|---|---------------------------------|----------------------------|---|--------------------------------------|---|---|--------------------------------------|---| | | BAROMETER | | | 1 | EMPERATU | RE | | | | | | | TE | MPERATU | Æ | 8) | | | | Month
and | Hourly
rrected
to 32° | | (| Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai
and | rence be
r Temper
Dew Poi
mperatur | ature
nt | f Humidity
Ion = 100) | Of Radi | lation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32°
Fahrennelt) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree of
(Saturation | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain colle
No.6, whos
surface
above t | Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | ٥ | 0 | in. | hours | hours | | May 1
2
3
4
5 | 29.872
29.752
29.586
29.663
29.803 | 50.8
46.6
66.0
56.6
63.6 | 40.7
40.0
44.4
42.5
40.3 | 10. 1
6. 6
21. 6
14. 1
23. 3 | 43.8
42.7
55.0
50.2
52.6 | - 5.5
- 6.8
+ 5.2
+ 0.2
+ 2.3 | 41.5
40.8
49.4
48.3
47.9 | 38.4
38.0
43.3
46.2
42.6 | 5.4
4.7
11.7
4.0
10.0 |
10.7
6.4
27.3
10.0
19.7 | 2.8
1.6
1.9
1.4
0.7 | 81
84
65
87
69 | 100.6
72.8
134.1
119.0
134.6 | 35.2
36.8
41.4
35.0
31.7 | 46.8
46.8
47.0
46.9
47.2 | 0.060
0.025
0.184
0.251
0.008 | 1.8
0.0
11.2
3.0
6.0 | 14.8
14.8
14.9
14.9
15.0 | | 6
7
8
9
10 | 29.895
29.860
29.757
29.703
29.749 | 65.3
73.0
70.8
75.3
61.4 | 45.0
48.3
52.2
50.8
47.0 | 20.3
24.7
18.6
24.5
14.4 | 54.5
60.5
60.8
63.1
57.0 | + 4.0
+ 9.8
+ 9.8
+11.9
+ 5.5 | 51.4
53.8
55.5
56.7
53.6 | 48. 4
47. 4
50. 9
51. 2
50. 5 | 6.1
13.1
9.9
11.9
6.5 | 14.0
26.4
17.3
20.1
11.8 | 1.0
2.1
3.4
2.6
2.0 | 80
62
70
66
79 | 108.3
138.2
128.0
129.7
98.1 | 36.3
37.5
45.1
39.5
37.0 | 47.2
47.7
47.7
48.0
48.1 | 0.033
0.000
0.000
0.000
0.000 | 4.1
12.0
1.0
5.1
0.1 | 15.1
15.1
15.2
15.2
15.3 | | 11
12
13
14
15 | 29.894
29.879
29.743
29.571
29.762 | 68.9
66.0
80.3
81.1
63.7 | 43.8
52.5
51.8
48.3
46.4 | 25.1
13.5
28.5
32.8
17.3 | 56.8
58.2
65.6
64.3
53.3 | + 5.0
+ 6.1
+13.2
+11.7
+ 0.5 | 50.7
54.1
60.2
56.8
48.6 | 44.3
50.5
56.1
50.4
43.4 | 12.5
7.7
9.5
13.9
9.9 | 24.5
10.9
20.7
26.0
24.4 | 1.5
2.2
0.6
2.4
3.8 | 63
76
72
61
69 | 136.0
117.0
132.2
142.1
123.2 | 31.6
41.1
47.1
45.1
43.0 | 48.6
48.7
49.0
49.3
49.6 | 0.000
0.001
0.098
0.038
0.099 | 9. 2
1. 2
6. 1
8. 9
7. 4 | 15.4
15.4
15.5
15.5
15.6 | | 16
17
18
19
20 | 29.842
29.784
29.709
29.877
30.051 | 61.5
65.2
60.2
62.2
51.6 | 45.9
41.8
44.3
48.0
46.6 | 15.6
23.4
15.9
14.2
5.0 | 52.8
54.2
52.3
53.8
49.5 | - 0.2
+ 1.1
- 1.0
+ 0.3
- 4.3 | 49.5
49.3
49.8
50.3
47.2 | 46.0
44.0
47.2
46.8
44.7 | 6.8
10.2
5.1
7.0
4.8 | 15.4
22.3
10.4
12.0
7.4 | 1.8
0.6
1.3
4.0
2.2 | 78
69
83
77
83 | 115.6
129.3
100.1
108.3
69.6 | 38.9
31.1
34.8
45.5
45.0 | 49.7
50.0
50.0
50.0
50.1 | 0.156
0.000
0.073
0.000
0.000 | 4.4
9.7
1.6
0.7
0.0 | 15.6
15.7
15.7
15.8
15.8 | | 21
22
23
24
25 | 30.129
30.004
29.685
29.560
29.680 | 55.7
62.7
62.2
69.7
68.4 | 47.8
47.6
45.4
47.0
52.5 | 7.9
15.1
16.8
22.7
15.9 | 51. 2
53. 1
53. 1
58. 6
59. 7 | - 3.0
- 1.5
- 1.8
+ 3.3
+ 4.2 | 48.9
50.1
51.0
53.2
54.5 | 46.5
46.9
49.0
48.0
49.8 | 4.7
6.2
4.1
10.6
9.9 | 6.4
16.6
8.5
20.8
18.7 | 1.9
1.0
1.6
0.7
1.6 | 84
80
85
68
70 | 72.8
123.0
95.0
147.3
144.3 | 46.4
43.3
41.1
35.1
43.1 | 50.3
50.3
50.3
50.4
50.6 | 0.000
0.000
0.070
0.012
0.005 | 0.0
6.2
0.5
9.9
9.0 | 15.9
15.9
16.0
16.0
16.0 | | 26
27
28
29
30 | 29.739
29.949
29.995
29.938
29.914 | 75.3
70.8
74.7
85.1
85.7 | 52.0
50.9
47.7
53.6
58.5 | 23.3
19.9
27.0
31.5
27.2 | 63.3
60.6
62.2
71.0
71.9 | + 7.5
+ 4.6
+ 6.0
+14.6
+14.2 | 57.5
55.4
55.5
62.2
63.3 | 52. 7
50. 9
49. 4
55. 8
57. 3 | 10.6
9.7
12.8
15.2
14.6 | 17.7
19.8
27.2
27.4
26.2 | 2.9
1.4
1.2
2.7
2.3 | 69
70
63
59
60 | 141.1
138.9
142.6
145.3
144.8 | 42.8
39.7
32.9
41.4
46.5 | 50.8
51.0
51.3
51.8
52.0 | 0.055
0.015
0.000
0.000
0.000 | 7.9
8.9
14.8
14.3 | 16. 1
16. 1
16. 1
16. 2
16. 2 | | 31 | 29.808 | 87.8 | 55.8 | 32.0 | 72.6 | +15.5 | 62.7 | 55.5 | 17.1 | 35.2 | 1.7 | 55 | 145.7 | 40.9 | 52.3 | 0.000 | 11.7 | 16.3· | | Means | 29.811 | 67.4 | 47.7 | 19.6 | 57.4 | + 4.3 | 52.6 | 48. 1 | 9.2 | 18.1 | 1.9 | 72.2 | 121.9 | 39.7 | 49.3 | Sum
1.183 | 6.1 | 15.6 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.811 in., being 0.010 in. higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR The highest in the month was 87°.8 on May 31; the lowest in the month was 40°.0 on May 2; and the range was 47°.8. The mean of all the highest daily readings in the month was 67.4, being 5.2 higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 47.7, being 3.5 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 19°.6, being 1°.6 greater than the average for the 65 years, 1841-1905. The mean for the month was 57°.4, being 4°.3 higher than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RE | SULTS | OF THE | METEO | ROLOGICAL | OBSERVATIONS | | | |-----------------------------|--|--------------------------------------|--|--------------------------------------|--|--|---|--|--|--|---|--|--| | | | | OF THE
TSKY | | SEL | WIND AS DEDUC
F-REGISTERING | | | | | | | | | Venth | Pol | aris | | JRSÆ
ORIS | | OSLER'S | | | Robin-
son's | | CLOUDS AND | WEATHER | | | Month
and
Day
1947 | 1 on | tion of
Exposure | on | tion of
Exposure | General I | Direction | on | ssure
the
re Foot | l Move—
he Air | | | | | | | Durat1on | Fraction
Total Exp | Duration | Fraction
Total Exp | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | e ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | May 1
2
3
4
5 | nours
0.6
0.0
0.0
6.3
4.1 | 0.09
0.00
0.00
1.00
0.65 | nours
0.3
0.0
0.0
6.3
4.1 | 0.05
0.00
0.00
1.00
0.65 | NNW: N: NNE
NE
E: SE: S
E: Calm: SW
SSE: Calm: S | NNE: NE
NE: ENE
SSE: SE: ESE
SSW: SSE
S: SE | 1bs.
3.5
14.6
10.6
1.3
3.0 | 1bs.
0.33
1.95
0.87
0.09
0.23 | miles
318
593
336
156
228 | bcir
cciR
croc
bw | ir c Ast Nbst c Nbst ir c b Frcu y c Nbst rr b c Cu Frcu y | c Cranb Acu p c h t c
c Nbst 1r c
b bc Ci so-ha y
r r c bc
c Stcu y | bc c c c c c b c b c b c c c b c | | 6
7
8
9
10 | 4.8
4.4
4.3
2.8
5.7 | 0.77
0.74
0.69
0.45
0.99 | 4.5
2.6
3.8
2.3
5.7 | 0.72
0.41
0.61
0.38
0.99 | SSE: Calm
Calm: SSE
Calm: NE: ENE
Calm: WSW | S: Calm
SE: E
SW: Calm
E: SE: SSW
WSW | 1.4
4.0
2.2
3.0
1.2 | 0.04
0.27
0.06
0.18
0.09 | 151
215
150
193
200 | bcbccbcprhn | c Nbst r 1do b Acu y c Acu Nbst p c b bc Cist y c Acu Nbst 1r | 1r o be Freu Ci prhn
be Cist so-ha y
c Ast Frst y
be Cist so-ha c y
c Steu | bc b
bc
c b
c
bc b | | 11
12
13
14
15 | 1.8
1.5
4.9
0.0
1.3 | 0.31
0.26
0.85
0.00
0.22 | 1.1
1.2
3.7
0.0
1.0 | 0.19
0.21
0.63
0.00
0.17 | WSW: W
Calm: ENE
E: Calm
Calm: SSW
WSW | Calm
E
Calm: E
SW: W
SW | 0.6
2.1
1.3
2.2
2.6 | 0.03
0.18
0.02
0.24
0.20 | 109
202
91
228
264 | bw
ciro
crtlrc
bwc
cb | b bc Ci so-ha y
c b c Ast Frcu
c Cist Acu so-ha c ro
c b Ci y
b c Acu y | c Ast Frst y c Ast Frcu c b Ci Frcu bc y b y Cist Acu so—ha c c Cu Stcu y | croc
cb
bcb
cror
Rrc | | 16
17
18
19
20 | 4.6
4.7
0.0
0.0
0.0 | 0.80
0.90
0.00
0.00
0.00 | 4.5
4.5
0.0
0.0
0.0 | 0.77
0.85
0.00
0.00
0.00 | WSW: Calm
Calm: SW
NNW: NW
NNE | Var.: Calm
Calm: E: S
WSW: NNW
NNW: NNE
NNE: N | 1.4 | 0.04
0.03
0.06
0.13
0.11 | 133
90
164
205
194 | cb
bwmc
c
c | c Cu Nbst ro c b c Cu Prcu y b c Ast Cu c iro c Ast c St | c NbstrtlcRc bc Cu Frcu y c Nbstrr _o c Acu Ast Z _o c Ast Stcu | c b
bc b
c r _o r c
c | | 21
22
23
24
25 | 0.0
0.6
4.1
0.1
1.6 | 0.00
0.11
0.77
0.02
0.32 |
0.0
0.6
3.5
0.1
0.6 | 0.00
0.11
0.66
0.02
0.12 | NNE: Calm
Calm: E
ENE: Calm
SW: Calm
Calm: SW | Calm
E
Calm
S: Calm
SW: S | 0.0
0.6
0.2
0.8
1.7 | 0.00
0.05
0.00
0.05
0.12 | 113
146
86
144
192 | c
cm _o
cm
bw
r _o c | c St
c m, bc Frcu
c Nost r, m
b bc Ci Cu y
bc c Cunb Ci | c St Frst m _o
b y
rr m c Nbst
bc c Cu y
c bc Frcu y | c mo
b c m
c b
c 1ro
bc | | 26
27
28
29
30 | 1.5
4.5
5.0
5.0
5.0 | 0.30
0.89
1.00
1.00 | 1.5
4.2
5.0
5.0
5.0 | 0.30
0.84
1.00
1.00 | Calm: SW
SW: WSW
Calm: SE
Calm: SE
Calm: E | SW
SW: Calm
E
SSE: Calm
E: ESE | 2.8
1.6
2.9
1.2
1.5 | 0.17
0.07
0.17
0.06
0.07 | 215
159
196
133
126 | bc c
r b c
b w
b w
b Z _o | c Acu y
c bc Frcu
b Ci y
b Ci y
b Frcu z _o y | c p _o bc Acu Ci v y
bc Frcu y
b y
b Ci y
b y | b c rr
b
b
b | | 31 | 4.5 | 1.00 | 4.5 | 1.00 | Calm: E | SSE: Calm | 1.1 | 0.06 | 110 | b be z _o | bc Ci so-ha y | bc b Ci y | р | | Means | 2.7 | 0.49 | 2.4 | 0.44 | •• | • • | •• | 0.19 | 188 | | | | | | No.of
Col.for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 52°.6, being $3^{\circ}.6$ higher than The mean Temperature of the Dew Point for the month was 48°.1, being 3°.3 higher than The mean Degree of Humidity for the month was 72.2, being 1.7 less than The mean Elastic Force of Vapour for the month was 0.337 in., being 0.039 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.7. The mean proportion of *Sunshine* for the month (constant sunshine being represented by 1) was 0.394. The maximum daily amount of *Sunshine* was 14.8 hours on May 28. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 147°.3 on May 24; and the lowest reading of the Terrestrial Radiation Thermometer was 31 .1 on May 17. The Proportions of Wind referred to the cardinal points were N.10, E.20, S.20, W.15, calm or nearly calm conditions 35, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 14.6 lbs. on the square foot on May 2. The mean daily Horizontal Movement of the Air for the month was 188 miles; the greatest daily value was 593 miles on May 2., and the least daily value was 86 miles on May 23. Rain (0.005 in. or over) fell on 16 days in the month, amounting to 1.183 in., as measured by gauge No.6 partly sunk below the ground; being 0.732 in. less than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | HE MET | EOROLOG | GICAL (| DBSER | VATIONS | | | | | | |----------------------------|---|---|---|---|--------------------------------------|--|--------------------------------------|---|-------------------------------------|--|--------------------------------------|--|---|--------------------------------------|---|---|---------------------------------------|--------------------------------------| | | BAROMETER | | | Γ | EMPERATU | RE | | | | | | | TE | MPERATUR | E | ω | | | | Month
and | Hourly
rected
to 32°
1t) | | (| Of the A | ir
 | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
r Temper
l Dew Poi
imperatur | rature
int | Degree of Humidity
(Saturation = 100) | Of Radi | ation | Of the
Earth
4 ft. | ted in Gaug
se receiving
s 5 inches
he Ground | Daily
Dura-
tion
of | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32°
Fahrenhelt) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | | 0 | ٥ | ٥ | in. | hours | hours | | June 1
2
3
4
5 | 29. 788
29. 732
29. 639
29. 481
29. 402 | 87.9
90.1
93.0
75.8
64.4 | 59.1
65.3
63.6
56.6
47.8 | 28.8
24.8
29.4
19.2
16.6 | 75.2
77.9
78.0
66.7
55.9 | +17.8
+20.1
+19.9
+ 8.4
- 2.5 | 65.9
67.3
66.4
60.0
52.2 | 59.9
60.7
58.9
54.9
48.6 | 15.3
17.2
19.1
11.8
7.3 | 28.8
33.0
37.0
21.5
21.2 | 2.1
3.3
1.0
3.9
0.6 | 59
56
52
66
76 | 146.8
150.3
147.1
139.0
122.9 | 45.3
49.5
48.1
46.5
41.0 | 52.7
53.0
53.5
53.7
53.8 | 0.000
0.000
0.000
0.001
0.045 | 13.4
11.9
13.5
9.2
0.5 | 16.3
16.3
16.4
16.4
16.4 | | 6
7
8
9
10 | 29.465
29.709
29.822
30.026
30.184 | 61.9
69.0
66.0
66.8
73.6 | 45.8
50.2
48.4
51.2
46.9 | 16.1
18.8
17.6
15.6
26.7 | 53.3
56.7
56.7
58.5
60.4 | - 5.0
- 1.5
- 1.4
+ 0.5
+ 2.3 | 49.5
52.7
51.8
52.0
52.3 | 45.5
48.8
46.9
45.5
44.0 | 7.8
7.9
9.8
13.0
16.4 | 19.1
16.9
17.7
21.0
26.6 | 3.2
1.1
3.8
5.2
3.7 | 75
75
70
62
55 | 107.2
129.1
135.5
132.2
128.8 | 36.5
43.2
39.0
42.0
31.8 | 53.8
53.9
54.0
53.9
54.0 | 0.090
0.263
0.160
0.000
0.000 | 6. 2
5. 5
6. 9
7. 4
10. 8 | 16.4
16.5
16.5
16.5
16.5 | | 11
12
13
14
15 | 29.980
29.853
29.745
29.419
29.460 | 72.9
62.6
62.1
61.0
62.0 | 46.5
47.8
44.7
48.0
49.3 | 26.4
14.8
17.4
13.0
12.7 | 61.0
55.4
53.0
53.4
54.7 | + 2.8
- 3.0
- 5.5
- 5.3
- 4.1 | 54.6
49.4
47.3
51.5
51.4 | 48.7
42.8
40.5
49.7
48.2 | 12.3
12.6
12.5
3.7
6.5 | 21.4
23.4
18.7
6.3
14.6 | 2. 2
4. 2
5. 6
1. 4
1. 4 | 64
62
63
87
79 | 129.5
130.9
134.9
97.6
122.8 | 33.5
40.0
35.6
40.9
39.0 | 54.0
54.0
54.0
54.0
53.9 | 0.000
0.000
0.013
0.226
0.157 | 7.6
13.8
8.0
1.1
1.5 | 16.5
16.6
16.6
16.6
16.6 | | 16
17
18
19
20 | 29. 943
29. 936
29. 830
29. 852
29. 784 | 67.8
77.7
68.6
70.2
63.5 | 44.5
54.2
55.7
53.9
53.7 | 23.3
23.5
12.9
16.3
9.8 | 56.3
66.7
62.2
61.1
59.1 | - 2.6
+ 7.7
+ 3.0
+ 1.6
- 0.8 | 52.0
59.3
59.7
56.0
56.7 | 47. 8
53. 4
57. 9
51. 6
54. 8 | 8.5
13.3
4.3
9.5
4.3 | 19.4
22.7
10.5
18.5
6.5 | 0.6
3.9
2.1
1.2
2.0 | 73
62
86
71
86 | 134.9
146.6
124.0
142.6
84.7 | 29.5
46.2
42.5
43.5
44.7 | 54. 1
54. 3
54. 2
54. 4
54. 4 | 0.000
0.000
0.090
0.000
0.010 | 6.0
13.5
1.0
8.5
0.0 | 16.6
16.6
16.6
16.6
16.6 | | 21
22
23
24
25 | 29.774
29.917
29.964
29.816
29.774 | 72. 0
66. 8
69. 0
78. 3
78. 2 | 53. 2
51. 4
47. 5
47. 0
56. 1 | 18. 8
15. 4
21. 5
31. 3
22. 1 | 61.1
59.5
59.1
64.6
66.6 | + 0.8
- 1.1
- 1.8
+ 3.4
+ 5.2 | 56.0
54.0
54.2
56.5
58.2 | 51.6
48.9
49.7
49.6
51.2 | 9.5
10.6
9.4
15.0
15.4 | 22.4
15.3
18.3
31.4
27.9 | 1.4
2.8
1.0
2.0
4.6 | 71
68
71
58
58 | 135.1
129.2
104.9
138.0
139.0 | 46.0
41.0
34.2
33.0
46.0 | 54.7
54.6
54.7
54.9
55.0 | 0.016
0.000
0.000
0.000
0.000 | 3.6
7.5
1.3
11.6
12.2 | 16.6
16.6
16.6
16.6
16.6 | | 26
27
28
29
30 | 29. 827
29. 875
29. 897
29. 957
30. 058 | 87.0
79.8
75.2
71.9
67.0 | 51.9
63.7
62.3
59.3
58.0 | 35.1
16.1
12.9
12.6
9.0 | 71.7
70.9
69.0
65.2
62.1 | +10.2
+ 9.3
+ 7.4
+ 3.6
+ 0.6 | 63.4
66.7
66.1
59.6
57.7 | 57.6
64.2
64.4
55.3
54.2 | 14.1
6.7
4.6
9.9
7.9 | 26. 4
15. 7
9. 5
18. 8
15. 9 | 1.8
0.8
1.3
2.8
2.4 | 61
79
85
71
75 | 147.6
107.3
133.3
136.5
98.7 | 40.0
55.0
48.9
57.0
54.0 | 55.1
55.3
55.9
56.2
56.2 | 0.000
1.668
0.066
0.000
0.122 | 12.4
4.8
4.2
5.3
0.0 | 16.6
16.6
16.6
16.6
16.6 | | Means | 29. 797 | 72. 1 | 52.8 | 19.3 | 62.4 | + 3.0 | 56.7 | 51.9 | 10.5 | 20. 2 | 2.4 | 69.2 | 128.6 | 42.4 | 54.3 | Sum
2.927 | 7.0 | 16.5 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding
temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.797 in., being 0.025 in. lower than the average for the 65 years, 1841-1905. ## TEMPERATURE OF THE AIR The highest in the month was 93°.0 on June 3; the lowest in the month was 44°.5 on June 16; and the range was 48°.5. The mean of all the highest daily readings in the month was 72°.1, being 3°.2 higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 52°.8, being 2°.4 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 19°.3, being 0°.8 greater than the average for the 65 years, 1841-1905. The mean for the month was 62°.4, being 3°.0 higher than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RE | SULTS | OF THE | METEC | ROLOGICAL | OBSERVATIONS | | | |-----------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--|---|-----------------------------------|---|-------------------------------------|---|--|--|---------------------------------------| | | | | OF THE
TSKY | | SEL | WIND AS DEDUC
F-REGISTERING | | | | | | | | | 16-m1h | Pol | aris | δι | URSÆ
IORIS | | OSLER'S | | | Robin-
son's | | CLOUDS . | AND WEATHER | | | Month
and
Day
1947 | 1on | n of
posure | 1on | n of
posure | General 1 | Direction | on | ssure
the
re Foot | l Move-
the Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A. M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to e ^h | 6 ^h to 12 ^h | 12 ^h to 18 ⁿ | 18 ^h to 24 ^h | | | hours | | hours | | | | lbs. | lbs. | miles | | | | | | June 1
2
3
4
5 | 4.2
4.5
4.5
1.2
4.5 | 0.93
1.00
1.00
0.26
1.00 | 3.2
4.5
4.5
1.1
4.5 | 0.70
1.00
1.00
0.24
1.00 | Calm: SSW
SSE: Calm
Calm: SW
SSE: SW: WSW | SSW: SSE
SSE: Calm
SSE: E
SSW: S
SSW: SW | 1.7
1.3
1.6
11.0
13.0 | 0.07
0.05
0.08
0.52
0.90 | 137
129
136
282
389 | bc
bcz
bcccir | b bc Ci Cu y b Ci y b Frcu y c q t ro bc Cunb Ci ro c r c Ast Cu y | bc b Acu Ci y b c Cist so-ha y b Frcu y bc c Cunb Ci v y c Nbst ir | bc b c b c c c c b c r bc b | | 6
7
8
9
10 | 2.1
3.5
1.5
4.5
4.5 | 0.46
0.79
0.33
1.00
1.00 | 1.0
3.0
0.7
4.5
4.5 | 0.21
0.67
0.16
1.00 | SW
WSW: SW
WSW: W
N: Calm | W: WSW
W
WSW
WNW: NW: NNW
Calm: S | 7.1
7.8
9.0
6.5
1.0 | 0.76
0.77
0.96
0.49
0.05 | 396
407
458
367
101 | b
cr
bcb
bc
b | crocNbstr
rrcStcu
cpcFrcuCi
cStcuy
bCiy | r t 1 c Cumb Ci p
bc c Ci Frcu y
c Ci Cumb p P c
c Frcu y
b c Frcu Acu y | p c
bc
bc
bc b
c b | | 11
12
13
14
15 | 0.0
4.5
0.0
0.9
4.5 | 0.00
1.00
0.00
0.20
1.00 | 0.0
4.5
0.0
0.9
4.5 | 0.00
1.00
0.00
0.20
1.00 | S: Calm
ENE
NE: E
Calm
SSW: WNW | E
ENE
ESE
SE: SSW
WNW: WSW | 3.7
4.5
2.9
2.7
4.7 | 0. 14
0. 62
0. 33
0. 13
0. 45 | 171
335
244
155
279 | b
c bc
b bc
c r _o r _o d _o
c rr c | b zo c Stou y bc b Frou y bc c Cist Cu y c Nost rr c Cunb p c Stou | c Stcu b y
b y
c Cist so-ha c Acu y
r r _o c Nbst
c Stcu | bc
b
croc
crobcr
bcb | | 16
17
18
19
20 | 1.5
4.5
2.2
2.0
0.0 | 0.34
1.00
0.49
0.44
0.00 | 1.5
4.5
2.2
1.9
0.0 | 0.33
1.00
0.49
0.41
0.00 | SW
S: SSW
Calm
WSW
SSW | SW: SSW
S: Calm
Calm: WSW
SW
SSW: Calm | 1.7
1.2
0.5
1.5
1.9 | 0.10
0.09
0.02
0.10
0.13 | 208
165
104
198
197 | b bc
c b
b w c z _o
bc
c d _o c | bc c Ast Cu
b Cu Cicu y
c Nbst ro ro r
bc c Stcu Frcu
c Nbst | c Stcu
b Cu Ci y
rr c r c Nbst
c Stcu b y
c Nbst r iro | cbc
bw
pbc
bc
1dc | | 21
22
23
24
25 | 2.0
4.5
2.6
1.9
3.6 | 0.44
1.00
0.59
0.43
0.80 | 2.0
4.5
1.5
1.8
3.5 | 0.44
1.00
0.34
0.41
0.78 | Calm: WSW
NNW
Calm: SW
Calm: S
Calm: WSW | NW
NNW: Calm
SW: S
S
WSW: S: Calm | 1.5
2.7
1.3
3.2
2.4 | 0. 07
0. 16
0. 05
0. 20
0. 15 | 170
207
150
192
209 | c
b c b
b c
b c
c b c | c b c Acu Stcu y b c Cu Frcu c Ast Stcu c b Acu Ci bc b Frcu y | c Cunb t 1 c r c
c Cu Stcu
c Ast Stcu y
b Frcu y
b Ci c y | c b
c b
c bc b
b y c
c bc | | 26
27
28
29
30 | 4.5
1.3
0.0
0.0 | 1.00
0.29
0.00
0.00 | 4.5
1.2
0.0
0.0 | 1.00
0.27
0.00
0.00 | Calm: S
Calm: NNW
Calm: ENE
W
Calm | SSE: Calm
WSW: Calm
Var.: WSW
W: WSW
Calm | 1.6
24.0
1.5
2.1
0.1 | 0.10
0.08
0.07
0.19
0.00 | 148
112
166
262
77 | bcb
c
bw
ctlc
cm _o | b bc Ci y
c R t 1 c G Q R t 1
c Acu Wbst
c Frcu Stcu
c Ast | bc c Cunb Acu t y r t 1 c Frcu b r R t 1 c Ast bc c Cu Frcu c Stcu | bcycb
b
cbctl
c
crr | | Means | 2.6 | 0.58 | 2.4 | 0.54 | •• | •• | | 0.26 | 218 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 - | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 56°.7, being 1°.8 higher than The mean Temperature of the Dew Point for the month was 51°.9, being 1°.1 higher than The mean Degree of Humidity for the month was 69.2, being 4.0 less than The mean Elastic Force of Vapour for the month was 0.389 in., being 0.014 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.1. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.422. The maximum daily amount of Sunshine was 13.8 hours on June 12. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 150°.3 on June 2; and the lowest reading of the Terrestrial Radiation Thermometer was 29°.5 on June 16. The Proportions of Wind referred to the cardinal points were N.7, E.12, S.28, W.27, calm or nearly calm conditions 26, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 24.0 lbs. on the square foot on June 27. The mean daily Horizontal Movement of the Air for the month was 218 miles; the greatest daily value was 458 miles on June 8, and the least daily value was 77 miles on June 30. Rain (0.005 in. or over) fell on 13 days in the month, amounting to 2.927 in., as measured by gauge No.6 partly sunk below the ground; being 0.889 in. greater than the average fall for the 65 years, 1841-1905. | | | <u>-i-</u> | | TABLE | XVII. | - DAIL | Y RESUL | TS OF T | не мет | EOROLO | GICAL | OBSER | VATIONS | | | | | | |----------------------------|---|--------------------------------------|--------------------------------------|---|---|--|--------------------------------------|---|--|--|---------------------------------|----------------------------|---|---|---|---|------------------------------------|---| | | BAROMETER | | | 7 | EMPERATU | RE | | | | - | | | Ti | EMPERATUR | Œ | ψ. | - | | | Month
and | Hourly
rrected
1 to 32°
1t) | | ı | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
r Temper
l Dew Poi
emperatur | ature
nt | Humidity
on = 100) | Of Rad | iation | Of the
Earth
4 ft. | ted in Gauge
e receiving
s 5 inches
ne Ground | Daily
Dura-
tion | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32°
Fahrenúelt) | H1ghest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree of
(Saturati | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | of
Sun-
shine | Horizon | | | in. | ٥ | 0 | ٥ | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | | 0 | 0 | ٥ | in. | hours | hours | | July
1
2
3
4
5 | 30.041
29.974
29.898
29.764
29.606 | 67.1
73.8
72.7
76.4
64.6 | 55.2
56.8
56.4
55.8
51.5 | 11.9
17.0
16.3
20.6
13.1 | 61.8
64.2
64.7
63.7
59.3 | + 0.3
+ 2.6
+ 2.9
+ 1.6
- 3.0 | 58.1
59.3
60.0
58.6
52.8 | 55. 2
55. 5
56. 5
54. 5
46. 5 | 6.6
8.7
8.2
9.2
12.8 | 12.5
14.7
15.6
22.8
23.3 | 1.3
2.0
1.8
1.5
4.6 | 79
74
75
72
62 | 107.0
134.8
138.0
146.0
121.3 | 49.2
50.5
47.0
41.9
42.5 | 56.4
56.6
56.6
56.7
56.5 | 0.003
0.017
0.000
0.107
0.009 | 0.1
1.6
4.7
4.8
7.1 | 16.6
16.6
16.5
16.5
16.5 | | 6
7
8
9
10 | 29. 693
29. 494
29. 399
29. 358
29. 440 | 65.9
69.8
64.7
68.0
62.0 | 48.3
51.8
50.4
51.1
52.2 | 17.6
18.0
14.3
16.9
9.8 | 57.1
59.6
56.8
57.0
56.3 | - 5.3
- 2.8
- 5.6
- 5.4
- 6.2 | 52.3
53.8
52.4
53.3
54.5 | 47.7
48.4
48.2
49.8
53.1 | 9.4
11.2
8.6
7.2
3.2 | 16.9
25.1
16.9
17.7
7.5 | 2.4
3.3
1.0
1.8
1.4 | 71
67
72
77
88 | 136.3
139.5
124.1
143.9
99.2 | 38. 2
45. 0
42. 5
44. 6
44. 1 | 56.7
56.8
56.8
56.7
56.6 | 0.003*
0.040
0.120
0.130
0.132 | 2.8
8.4
4.7
6.1
0.1 | 16.5
16.5
16.4
16.4
16.4 | | 11
12
13
14
15 | 29.565
29.915
30.085
30.071
29.880 | 66.1
71.3
77.6
81.0
77.7 | 51.9
48.8
56.2
60.8
61.4 | 14.2
22.5
21.4
20.2
16.3 | 57.9
60.3
66.5
69.0
68.8 | - 4.8
- 2.6
+ 3.4
+ 5.7
+ 5.4 | 53.4
54.5
62.4
64.4
63.4 | 49.3
49.3
59.6
61.5
59.8 | 8.6
11.0
6.9
7.5
9.0 | 15.9
20.9
14.6
17.6
17.3 | 1.6
1.1
2.7
1.6
1.4 | 72
67
79
77
73 | 110.1
142.9
137.4
133.0
136.1 | 49.0
38.1
47.4
49.0
53.7 | 56.7
56.8
56.7
56.8
57.0 | 0.039
0.001*
0.000
0.000 | 1.5
9.2
3.2
3.6
11.5 | 16.3
16.3
16.3
16.3
16.2 | | 16
17
18
19
20 | 29.726
29.815
29.772
29.670
29.709 | 83.2
67.8
72.6
77.0
74.8 | 61.4
60.6
60.2
57.7
56.4 | 21.8
7.2
12.4
19.3
18.4 | 70. 5
64. 5
65. 7
64. 3
62. 6 | + 7.1
+ 1.1
+ 2.4
+ 1.1
- 0.6 | 64.9
62.3
62.9
61.5
57.1 | 61.3
60.8
61.0
59.5
52.5 | 9.2
3.7
4.7
4.8
10.1 | 20.9
6.3
9.8
18.3
19.8 | 1.7
1.2
0.7
0.0
3.1 | 72
88
85
85
70 | 139.3
101.7
94.9
145.7
134.6 | 52.4
57.7
50.6
52.5
53.8 | 57.1
57.2
57.3
57.7
57.7 | 0.010
0.415
0.101
0.091
0.000 | 6.3
0.0
0.1
3.4
4.2 | 16. 2
16. 1
16. 1
16. 1
16. 0 | | 21
22
23
24
25 | 29. 753
29. 872
29. 955
29. 958
29. 899 | 74.5
78.5
78.9
78.0
86.6 | 57.5
61.0
56.7
53.5
58.4 | 17.0
17.5
22.2
24.5
28.2 | 66. 5
69. 5
67. 2
65. 9
71. 6 | + 3.3
+ 6.4
+ 4.2
+ 3.0
+ 8.9 | 60.7
64.0
60.8
59.9
63.8 | 56. 4
60. 4
56. 1
55. 3
58. 5 | 10. 1
9. 1
11. 1
10. 6
13. 1 | 15.3
16.9
19.5
20.5
25.5 | 4.4
2.3
2.0
1.9
2.3 | 70
73
68
69
64 | 142.5
142.4
143.1
136.9
144.1 | 51.4
52.4
45.9
38.7
46.4 | 57.8
57.9
58.3
58.2
58.5 | 0.000
0.000
0.000
0.000
0.000 | 1.3
11.5
4.8
6.2
6.5 | 16.0
16.0
15.9
15.9
15.8 | | 26
27
28
29
30 | 29. 894
29. 890
29. 810
29. 819
29. 936 | 86.3
84.9
90.2
82.4
70.9 | 63.9
62.8
65.1
67.2
60.2 | 22. 4
22. 1
25. 1
15. 2
10. 7 | 74.8
73.2
76.3
73.5
65.9 | +12.3
+10.8
+14.0
+11.2
+ 3.6 | 67.7
67.2
70.2
66.1
62.3 | 63.5
63.6
66.9
61.5
59.9 | 11.3
9.6
9.4
12.0
6.0 | 23. 2
23. 4
23. 1
21. 1
9. 8 | 1.7
1.5
2.2
3.6
2.6 | 68
72
73
66
81 | 150.2
144.2
148.3
140.1
109.7 | 53.6
49.5
58.7
60.3
55.0 | 58.6
58.7
59.0
59.1
59.2 | 0.000
0.000
0.018
0.000
0.007 | 12.8
10.2
5.5
10.2
0.9 | 15.8
15.7
15.7
15.6
15.6 | | 31 | 29. 938 | 75.4 | 60.0 | 15.4 | 65.9 | + 3.7 | 60.7 | 56.9 | 9.0 | 19.4 | 2.6 | 73 | 134.9 | 53.0 | 59.5 | 0.000 | 6.4 | 15.5 | | Means | 29.794 | 74.9 | 57.1 | 17.7 | 65.2 | + 2.5 | 60.2 | 56.4 | 8.8 | 17.8 | 2.0 | 73.6 | 132.3 | 48.9 | 57.5 | Sum
1.243 | 5.2 | 16.1 | | No.of
Col.for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. * Rainfall (Column 16). The amounts entered on July 6 and 12 are derived from dew. The mean reading of the Barometer for the month was 29.794 in., being 0.012 in. lower than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR The highest in the month was 90°.2 on July 28; the lowest in the month was 48°.3 on July 6; and the range was 41°.9. The mean of all the highest daily readings in the month was 74°.9, being 2°.8 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 17°.7, being 0°.6 less than the average for the 65 years, 1841-1905. The mean for the month was 65°.2, being 2°.5 higher than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RE | SULTS | OF THE | METEO | ROLOGICAL | OBSERVATIONS | | | |----------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---|--|---------------------------------|--|---|---|--|---|---| | | | RECORD
NIGH | OF THE
TSKY | | SEI | WIND AS DEDUC
F-REGISTERING | ED FROM | M
ETERS | | | | | | | Month | Pol | aris | δ
MIN | URSÆ
IORIS | | OSLER'S | | | Robin-
son's | | CLOTINS | AND WEATHER | | | and
Day
1947 | tion | on of
sposure | ton | tion of
Exposure | General : | Direction | on | ssure
the
re Foot | al Move-
the Air | | 0110020 | ALD NEATHER | | | | Duration | Fraction of
Total Exposure | Duration | Fracti
Total Ed | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | July 1
2
3
4
5 | 0.0
2.3
4.5
0.0
4.4 | 0.00
0.52
1.00
0.00
0.93 | 0.0
2.2
4.5
0.0
4.4 | 0.00
0.49
1.00
0.00
0.92 | Calm: N
WSW
Calm: SW
Calm: SW
SW: WNW | NNW: Calm
WSW: SW
WSW: SW
SW: SSW
W: WSW | 1bs. 0.5 1.2 1.0 2.0 8.5 | 1bs.
0.02
0.07
0.05
0.14
0.93 | miles
99
180
169
210
423 | c m _o c r r _o c bc w b w c c r _o c | c Stcu Acu
r ro c Ast
bc c Cu Frcu
c bc c Ast Ci y
c bc c Cu v y | c ro c Ast
c Acu
c Stcu
c Ci Ast y
c Stcu v y | c c b c c b c ir bc b | | 6
7
8
9
10 | 4.3
1.8
2.6
0.0 | 0.91
0.38
0.54
0.00 | 4.3
1.3
2.3
0.0 | 0.91
0.26
0.48
0.00 | WSW
SW: WSW
SSW: SW
SW: W
WSW: SW | WSW: SW
SW
SW
WSW
• SW: WSW | 4.7
6.8
8.5
6.0
4.6 | 0. 47
0. 81
1. 13
0. 18
0. 36 | 307
373
417
223
305 | bwc
c
bwc
c
cir _o | c Acu Stcu y c ir c Frcu v c D c Cu Ast c Cu Cunb Do c Nbst ir | c bc c Stcu y bc y Cu v c Nbst p c Cunb Ast R t l p c Nbst ir c | c D c
bc b w
c r r
c bc
c | | 11
12
13
14
15 | 3.4
2.0
4.7
2.6
3.8 | 0.71
0.38
0.90
0.50
0.73 | 3.3
1.9
4.7
2.2
3.2 | 0.69
0.36
0.89
0.41
0.61 | WSW
WSW
SW: WSW: W
Calm
E | WSW: W
WSW: SW
W: Calm
SE: E
ESE: Calm | 3.0
1.6
0.6
1.4
2.4 | 0.44
0.10
0.04
0.06
0.20 | 340
191
136
117
202 | crc
bw
c
bwc | c Nbst b c Frcu y c do c Acu c m c Stcu b | c Ast y c Stcu y c Acu Cu c Stcu Cu b c b | c c b c bc c b bc | | 16
17
18
19
20 | 1.3
0.0
0.6
0.0
0.9 | 0.25
0.00
0.12
0.00
0.15 | 1.2
0.0
0.6
0.0
0.8 | 0.23
0.00
0.11
0.00
0.13 | Calm
N: Calm
Calm
Calm
WSW | WSW: W: NNW
N: Calm
Calm
Var.
SSW | 2.0
0.5
0.3
1.0
1.6 | 0.08
0.02
0.00
0.02
0.08 | 149
121
51
104
171 | bc w mo
c t l rr mo
c ro c mo
c ff
c | bc Ou Zor
c Nost mo
c Steu mo
bc c t mo
c Steu | bc c Frcu Ci
c Nbst 1ro mo
c Nbst t 1 r mo
c Nbst Cunb ro
c bc Stcu | crtlbc
ciro mo
bcmcf
rroc
bcc | | 21
22
23
24
25 | 1.8
5.4
5.7
3.1
2.6 | 0.32
0.94
1.00
0.54
0.45 | 1.8
5.0
5.7
3.0
2.3 | 0.32
0.87
1.00
0.53
0.39 | S: SSE
Calm: SSW
Calm: WSW
Calm
Calm | S: SSE
SSW: SW
WSW: W
SSW: Calm
WSW: W: Calm | 3.4
1.4
2.0
0.5
1.2 | 0. 17
0. 08
0. 07
0. 02
0. 04 | 195
164
141
104
115 | c
bc
blwc
bw
c | c Nost ro bc c Cu b c po c Acu Ci y b c Cist mo c bc Acu y | c Ast 1ro c b Cu c Acu Cu D c c Cist so-ha c b y b Cu Ci c y | c b b 1 c b bc c | | 26
27
28
29
30 | 6.0
5.6
2.3
4.3
1.7 | 1.00
0.93
0.37
0.72
0.28 | 6.0
5.6
1.9
4.2
1.3 | 1.00
0.93
0.32
0.69
0.22 | WSW: Calm
Calm: ENE
Calm: E: Var
NNW: W
NE: ENE | WSW: SW: Calm
E
Var.
NW: NNW: N
ENE: E | 1.0
2.2
2.1
1.2
1.9 | 0.07
0.19
0.13
0.09
0.13 | 158
187
191
174
224 | b c b
b c
t 1 c
b c m | b bc Cu Frcu b bc c Stcu po y c b c Stcu y c b Frcu c St mo | bc Cu y c Cu b y c Stcu b bc Frcu Cu y c Acu mo p | bc b b bc b roctlr bc b c | | 31 | 4.5 | 0.75 | 4.1 | 0.69 | ENE | E | 1.3 | 0.15 | 211 | рс с | c Freu | b Frcu y | bc | | Means | 2.7 | 0.51 | 2.6 | 0.48 | •• | •• | •• | 0. 20 | 198 | | | | | | No.of
Col.for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 60°.2, being 2°.3 higher than The mean Temperature of the Dew Point for the month was 56°.4, being 2°.3 higher than The mean Degree of Humidity for the month was 73.6, being 0.4 greater than The mean Elastic Force of Vapour for the month was 0.459 in., being 0.038 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.9. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.319. The maximum daily amount of Sunshine was 12.8 hours on July 26. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 150°.2 on July 26; and the lowest reading of the Terrestrial Radiation Thermometer was 38 .1 on July 12. The Proportions of Wind referred to the cardinal points were N.7, E.12, S.21, W.31, calm or nearly calm conditions 29, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 8.5 lbs. on the square foot on July 5 and 8. The mean daily Horizontal Movement of the Air for the month was 198 miles; the greatest daily value was 423 miles on July 5, and the least daily value was 51 miles on July 18. Rain (0.005 in. or over) fell on 14 days in the month, amounting to 1.243 in., as measured by gauge No.6 partly sunk below the ground; being 1.156 in. less than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAIL | RESUL | TS OF T | HE MET | EOROLOG | FICAL | OBSER | VATIONS | | | | | | |----------------------------|---|--------------------------------------|--------------------------------------|---|--------------------------------------|--|--------------------------------------|---|--------------------------------------|--|---------------------------------|--|--|---|---|--|------------------------------------|---| | | BAROMETER | | | 7 | EMPERATU | TRE . | | | | | | | TE | MPERATUR | Œ | | | | | Month
and | Hourly
rrected
1 to 32°
elt) | | ı | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai
and | rence bet
r Temper
Dew Poi
mperatur | ature
nt | Degree of Humidity
(Saturation = 100) | Of Rad | iation | Of the
Earth
4 ft. | collected in Gauge
6, whose receiving
urface is 5 inches
above the Ground | Daily
Dura-
tion | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32°
Fahrenhelt) | H1ghest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | | Rain collec
No.6, whose
surface i | of
Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | | ٥ | 0 | 0 | in. | hours | hours | | Aug. 1
2
3
4
5 | 29. 990
29. 889
29. 858
29. 637
29. 531 | 77.0
73.0
79.8
78.3
70.0 | 57.2
62.2
59.0
57.9
59.2 | 19.8
10.8
20.8
20.4
10.8 | 66.3
65.6
69.0
67.3
63.0 | + 4.1
+ 3.5
+ 6.9
+ 5.2
+ 0.9 | 60.9
60.2
62.1
60.5
59.2 | 56. 9
56. 1
57. 2
55. 4
56. 3 | 9.4
9.5
11.8
11.9
6.7 | 19.8
19.1
25.4
23.2
13.3 | 1.8
1.7
1.4
3.7
2.1 | 72
72
66
66
79 | 137.0
134.4
140.7
135.2
123.5 | 47.7
52.0
47.1
45.7
49.0 | 59.7
59.5
59.7
59.7
59.5 | 0.009
0.045
0.000
0.001*
0.032 | 6.5
1.8
10.5
5.5
1.3 | 15.5
15.4
15.4
15.3
15.3 | | 6
7
8
9
10 | 29. 735
29. 900
29. 913
29. 834
29. 871 | 73.8
71.0
76.8
75.7
70.0 | 57.6
53.0
46.8
52.0
53.6 | 16. 2
18. 0
30. 0
23. 7
16. 4 | 64.9
62.4
62.2
63.6
61.8 | + 2.7
+ 0.2
- 0.1
+ 1.3
- 0.5 | 58.7
54.2
54.9
56.9
57.2 | 53.8
46.3
48.2
51.2
53.5 | 11.1
16.1
14.0
12.4
8.3 | 21.1
24.8
25.8
24.9
16.6 | 3.5
6.2
1.6
1.5
1.3 | 67
55
60
64
74 | 134.9
136.7
120.1
132.3
115.5 | 50.9
42.0
33.2
36.3
37.8 | 59. 5
59. 5
59. 5
59. 6
59. 3 | 0.000
0.000
0.000
0.000
0.000 | 3.6
4.6
11.4
11.7
3.3 | 15. 2
15. 1
15. 1
15. 0
15. 0 | | 11
12
13
14
15 | 29.989
30.036
30.025
30.017
29.973 | 75.6
77.8
80.8
82.2
88.0 | 54.2
54.2
54.2
57.7
59.4 | 21.4
23.6
26.6
24.5
28.6 | 64.0
64.8
67.5
68.3
71.9 | + 1.6
+ 2.3
+ 5.0
+ 5.8
+ 9.5 | 58.8
58.7
60.3
62.1
63.6 | 54.7
53.9
54.8
57.7
57.9 | 9.3
10.9
12.7
10.6
14.0 | 20.0
25.7
28.0
29.4
34.9 | 1.3
1.3
1.6
0.3
1.4 | 72
68
64
69
61 | 134. 2
137. 0
140. 0
136. 5
138. 9 | 40.4
37.6
40.0
46.2
50.1 | 59.3
59.6
59.6
59.4
59.7 | 0.000
0.000
0.000
0.001*
0.000 | 6.3
9.6
12.4
8.7
12.1 | 14.9
14.9
14.8
14.7
14.7 | | 16
17
18
19
20 | 29. 991
30. 002
29. 933
29. 885
29. 930 | 89.7
88.4
88.3
81.3
83.3 | 60.2
62.4
62.8
62.7
56.6 | 29. 5
26. 0
25. 5
18. 6
26. 7 | 74.5
74.0
74.4
71.6
68.9 | +12.2
+11.9
+12.5
+ 9.9
+ 7.4 | 65.2
65.3
65.3
62.3
62.0 | 59.1
59.7
59.3
55.5
57.1 | 15.4
14.3
15.1
16.1
11.8 | 28.4
26.7
29.2
30.1
30.6 | 3.5
3.6
3.9
5.6
0.9 | 59
61
60
57
66 | 139. 2
139. 8
144. 1
137. 7
136. 6 | 47. 2
49. 1
51. 5
55. 1
48. 8 | 59.7
59.7
60.0
60.0
60.1 | 0.000
0.000
0.000
0.000
0.000 | 12.4
9.5
11.6
10.8
8.7 | 14.6
14.6
14.5
14.4
14.4 | | 21
22
23
24
25 | 29.835
29.835
29.979
30.090
30.102 | 80.1
77.8
81.2
78.3
79.3 | 62.4
61.8
59.6
56.3
57.7 | 17.7
16.0
21.6
22.0
21.6 | 69.4
69.0
67.6
66.8
67.3 | + 8.1
+ 7.9
+ 6.7
+ 6.0
+ 6.6 | 61.5
61.8
61.8
59.2
60.4 | 55. 7
56. 6
57. 7
53. 1
55. 2 | 13.7
12.4
9.9
13.7
12.1 | 31.7
20.9
28.3
28.3
24.2 | 2.7
3.9
1.9
2.2
2.4 | 62
65
71
61
65 | 138.1
135.5
140.3
142.9
135.2 | 57.4
56.1
55.3
41.5
44.3 | 60.3
60.4
60.4
60.6
60.5 | 0.000
0.000
0.002
0.000
0.000 | 3.8
8.6
5.6
9.6
8.9 | 14.3
14.3
14.2
14.1
14.1 | | 26
27
28
29
30 | 30. 143
30. 129
30. 122
30. 064
29. 995 | 78.6
81.3
81.7
77.0
71.2 | 59.3
56.9
58.4
57.7
55.5 | 19.3
24.4
23.3
19.3
15.7 | 67.3
68.8
68.1
66.0
63.6 | + 6.6
+ 8.2
+ 7.7
+ 5.7
+ 3.5 | 60.7
59.9
60.1
60.2
57.8 | 55. 8
52. 9
53. 9
55. 8
53. 1 | 11.5
15.9
14.2
10.2
10.5 | 24.4
34.3
35.9
21.0
20.3 | 1.6
2.0
1.6
1.1
2.8 | 67
57
60
70
69 | 140.2
138.3
136.9
135.7
111.5 | 44.5
44.7
48.0
47.5
43.4 | 60.6
60.7
60.8
60.6
60.5 | 0.000
0.000
0.000
0.000
0.000 | 8.1
11.7
10.1
9.5
1.4 | 14.0
14.0
13.9
13.8
13.8 | | 31 | 29.955 | 74.5 | 54.7 | 19.8 | 65.0 | + 5.1 | 56.4 | 48.7 | 16.3 | 36.8 | 1.2 | 55 | 136.4 | 38.8 | 60.6 | 0.000 | 11.0 | 13.7 | | Means | 29.942 | 78.8 | 57.5 | 21.2 | 67.3 | + 5.6 | 60.3 | 54.9 | 12.3 | 25.9 | 2.3 | 65.0 | 135.0 | 46.1 | 60.0 | Sum
0.090 | 8. 1 | 14.6 | | No.of
Col.for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer
(Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. * Rainfall (Column 16). The amount entered on August 4 is derived from dew and that on August 14 from wet fog. The mean reading of the Barometer for the month was 29.942 in., being 0.152 in. higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR The highest in the month was 89°.7 on August 16; the lowest in the month was 46°.8 on August 8; and the range was 42°.9. The mean of all the highest daily readings in the month was 78°.8, being 8°.0 higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 57.5, being 3.9 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 21°.2, being 4°.0 greater than the average for the 65 years, 1841-1905. The mean for the month was $67^{\circ}.3$, being $5^{\circ}.6$ higher than the average for the 65 years, 1841-1905. | | | | OF THE
T SKY | | SEI | WIND AS DEDUC | | | | | | | | |-----------------------------|--------------------------------------|---|---------------------------------|--------------------------------------|--|--|----------------------------------|---|-------------------------------------|---|---|---|------------------------------------| | | Pol | aris | δι | URSÆ
IORIS | | OSLER'S | | | Robin-
son's | | CLOUDS AND | Lan Arturd | | | Month
and
Day
1947 | lon | tion of
Exposure | 1on | tion of
Exposure | General 1 | Direction | on | ssure
the
re Foot | 1 Move-
he Air | | CLOUDS AND | WE'N TUDY | | | | Duration | Fraction
Total Exp | Duration | Fractic
Total Ex | A. M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ⁿ to e ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | | hours | | hours | | <u> </u> | | lbs. | lbs. | miles | | | | | | Aug. 1
2
3
4
5 | 3.5
3.2
3.3
0.1
2.5 | 0.58
0.49
0.51
0.02
0.38 | 3.4
2.8
2.8
0.1
2.5 | 0.56
0.43
0.44
0.02
0.38 | Calm: E
E
SW: WSW
Calm: SW
Calm: WSW | E
E: SW
SW: Calm
SW: Calm
W: WSW | 6.0
10.0
1.6
1.7
2.5 | 0. 33
0. 59
0. 12
0. 10
0. 18 | 236
276
192
173
211 | bc w c b c c w c r c | c b Ci y c po c Ast Stcu c Acu b y v c Frcu Stcu c Nost iro | b Ci y c Acu po
c Nbst p
b Acu y v
c Cu b y
c bc Prcu | p b c p c b w c b c c | | 6
7
8
9
10 | 1. 3
6. 5
6. 5
6. 9
6. 6 | 0. 19
1. 00
1. 00
0. 98
0. 94 | 1.0
6.2
6.5
6.3
6.0 | 0.15
0.96
1.00
0.90
0.86 | WSW: W
NW
Calm
Calm
ENE: NE | W: NW: WNW
NW: WNW: Calm
SSE: Calm
E
NE: E: Calm | 2.4
2.0
0.5
2.0
1.4 | 0.35
0.15
0.01
0.11
0.07 | 290
205
92
166
166 | c
c
b m
b m
b w | c Stcu
c Stcu
b Ci z y
b bc Stcu y
b c Stcu | c Cu Cicu y c bc Cu Acu y b z _o y bc b Cu y c Stou b | c
b
b
b | | 11
12
13
14
15 | 6.9
7.0
6.6
5.0
7.0 | 0.99
1.00
0.94
0.71
1.00 | 6.7
7.0
6.1
4.9
7.0 | 0.96
1.00
0.87
0.70
1.00 | Calm: NNE
Calm: NE
Calm: ENE
E: NE
Calm: NNE | NE: Calm
E: Calm
E
ENE: E
ENE: E | 0.7
0.9
2.7
2.6
2.0 | 0.06
0.12
0.23
0.24
0.10 | 119
135
187
202
165 | bwc
bwcf
bw
bcfe
bcbwm _o | c Stcu
f c b Frcu y
b Ci Frcu y
fe c b y
b y | bc b Cu y b Cicu y b Ci y b y b y b Frcu y | b
b
b
b | | 16
17
18
19
20 | 7.5
2.9
7.3
7.5
3.1 | 1.00
0.38
0.98
1.00
0.42 | 7.5
0.9
7.2
7.5
2.7 | 1.00
0.12
0.96
1.00
0.37 | Calm: NNE
NNE: N
Calm: NNE
NNE: NE
Calm: NE | NE: Calm
NNE: E: Calm
NE: ENE
ENE: Calm
NE: E: ENE | 1.1
1.9
1.3
5.4
2.5 | 0.05
0.07
0.07
0.16
0.13 | 136
166
171
221
210 | b
c b z _o
b bc
b c f | by b Ci Acu y b Ci Cicu y c b Acu y f b Ci y | b y b c Acu Cicu y b Cicu y b Ci y b bc Ci c y | b
c
b
c | | 21
22
23
24
25 | 2.5
4.8
4.7
5.0 | 0.33
0.64
0.59
0.63 | 0.9
3.6
3.9
4.9 | 0.12
0.48
0.49
0.62 | ne: ene
ne: ene
ne: nne
nne: ne
nne: n | ENE: NE
ENE: NE
NNE: ESE: NE
NNE: E: NE
NNE: E: NE | 5.6
4.0
1.4
3.3
1.6 | 0.54
0.30
0.06
0.17
0.11 | 349
294
165
216
181 | c b <i>Ci Acu</i>
b c
c
c b
b c | c b Ci Acu bc Ci Frcu y c bc Ci Frst y b bc Cu y c b Cu y | bc c Acu Ci y bc Ci y b c Cu t y bc Cu b y b bc Cu y | c
bcbc
croc
b | | 26
27
28
29
30 | 8.0
8.0
6.6
7.6
8.3 | 1.00
1.00
0.82
0.95
0.98 | 8.0
8.0
5.1
7.4
7.8 | 1.00
1.00
0.64
0.92
0.92 | NE: NNE
NE: Calm
NE: Calm
Calm: NE
NE | NE: E: ENE
NE: E
E: Calm
E: ENE
ENE | 1.5
3.5
2.0
1.7
1.8 | 0.13
0.15
0.08
0.11
0.13 | 195
210
173
181
203 | bc
bwc
cm
bcc | c b Frcu y b Frcu y c b Ci z c m b Cicu y c Cist so-ha c Stcu | b y b Frou y b Ci y b bc Cicu y c Stou | b b b lu-ha bc c bc | | 31 | 8.5 | 1.00 | 8.5 | 1.00 | Calm: ENE | ENE: E | 3.2 | 0.15 | 201 | bc w | b Ci y | b Ci y | b so-ha b | | Means | 5.5 | 0.75 | 5.1 | 0.70 | • • | •• | | 0.17 | 196 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 60°.3, being 2°.8 higher than The mean Temperature of the Dew Point for the month was 54°.9, being 0°.6 higher than The mean Degree of Humidity for the month was 65.0, being 11.8 less than the average for the 65 years, 1841-1905. The mean Elastic Force of Vapour for the month was 0.435 in., being 0.011 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 4.0. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.553. The maximum daily amount of Sunshine was 12.4 hours on August 13 and 16. The highest reading of the Solar Radiation Thermometer was 144°.1 on August 18; and the lowest reading of the Terrestrial Radiation Thermometer was 33°.2 on August 8. The Proportions of Wind referred to the cardinal points were N.22, E.41, S.4, W.9, calm or nearly calm conditions 24, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 10.0 lbs. on the square foot on August 2. The mean daily Horizontal Movement of the Air for the month was 196 miles; the greatest daily value was 349 miles on August 21, and the least daily value was 92 miles on August 8. Rain (0.005 in. or over) fell on 3 days in the month, amounting to 0.090 in., as measured by gauge No.6 partly sunk below the ground; being 2.254 in. less than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | HE MET | EOROLOG | ICAL (| OBSER | VATIONS | | | | | | |----------------------------|---|--------------------------------------|---|---|---|--|--------------------------------------|---|-----------------------------------|--|---------------------------------|--|---|---|---|---|---------------------------------|--------------------------------------| | | BAROMETER | | | T | EMPERATU | RE | _ | | | | | | TE | MPERATUF | Œ | d) | | | | Month
and | Hourly
rected
to 32° | | | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence bet
r Temper
Dew Poi
mperatur | ature
nt | Degree of Humidity
(Saturation = 100) | Of Rad | iation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32°
Fahrenhelt) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree of
(Saturat | Highest
in Sun's
Rays |
Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collec
No.6, whos
surface i
above th | of
Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | ٥ | | 0 | 0 | ٥ | in. | hours | hours | | Sept.1 | 29.920
29.949 | 74.7
73.6 | 52.8
55.1 | 21.9
18.5 | 64.0
63.9 | + 4.2
+ 4.2 | 58.2
58.0 | 53.5
53.3 | 10.5
10.6 | 21.4
23.7 | 1.7
1.5 | 69
68 | 133.9
135.6 | 36.8
45.0 | 60.6
60.7 | 0.000 | 9.4
6.3 | 13.6
13.6 | | 3
4 | 29.911
29.844 | 76.8
79.5 | 48.9
54.6 | 27.9
24.9 | 62.8 | + 3.2 | 56.5
58.9 | 51.1
54.1 | 11.7 | 28.7
25.9 | 0.8
2.0 | 66 | 127.3 | 34.7
42.4 | 60.6 | 0.000
0.000
0.000 | 4.7
3.6
9.4 | 13.5
13.5
13.4 | | 5 | 29.867 | 80.7 | 51.2 | 29.5
19.8 | 65.6 | + 6.2 | 57.9 | 51. 4
48. 9 | 14.2
15.3 | 31.5 | 1.4
3.7 | 58 | 128.4 | 37.5
41.7 | 60.5 | 0.000 | 9.4 | 13.4 | | 6
7
8 | 29.920
29.860
29.727 | 75.6
73.2
73.4 | 52.4 | 20.8 | 63.1 | + 4.1
+ 5.8 | 58.3 | 54.5 | 8.6
8.2 | 17.6
15.8 | 2.4 | 74 | 137.9 | 38.3
43.0 | 60.1 | 0.003 | 4.0 | 13.3 | | 9 | 29.803
29.894 | 72.7 | 45.8
57.0 | 26.9
21.8 | 60.5 | + 1.9 | 54.3 | 48.6 | 11.9 | 22.3 | 2.9 | 65 | 118.3
141.0 | 32.1
47.0 | 60.0 | 0.000 | 5.1
9.7 | 13.1
13.0 | | 11
12
13
14
15 | 29. 821
29. 846
29. 774
29. 774
29. 816 | 83.7
69.4
73.5
70.8
81.7 | 50.3
60.0
51.4
50.7
58.5 | 33.4
9.4
22.1
20.1
23.2 | 67.4
65.1
62.4
60.1
68.8 | + 9.3
+ 7.1
+ 4.6
+ 2.4
+11.2 | 60.1
62.9
59.3
57.3
63.3 | 54. 5
61. 5
56. 9
55. 0
59. 7 | 12.9
3.6
5.5
5.1
9.1 | 26.0
5.2
16.1
12.7
22.3 | 1.2
1.8
1.5
1.2
1.8 | 63
88
83
83
73 | 139. 2
87. 0
126. 2
106. 7
136. 3 | 36.8
52.0
40.0
37.4
50.4 | 60.3
59.9
60.0
59.8
60.1 | 0.000
0.042
0.028
0.000
0.002 | 9.7
0.4
1.5
0.6
8.5 | 13.0
12.9
12.9
12.8
12.7 | | 16
17
18
19
20 | 29.697
29.971
29.881
29.747
29.763 | 82.3
73.0
65.2
75.2
72.3 | 54. 4
47. 5
55. 6
62. 8
55. 7 | 27.9
25.5
9.6
12.4
16.6 | 68.3
60.0
61.4
66.9
63.8 | +10.8
+ 2.8
+ 4.5
+10.4
+ 7.6 | 61.6
54.3
59.4
65.2
61.2 | 56.8
49.1
58.0
64.2
59.4 | 11.5
10.9
3.4
2.7
4.4 | 23. 1
27. 2
6. 5
10. 9
12. 0 | 4.1
1.3
0.8
0.6
0.9 | 67
67
88
91
86 | 135.6
129.9
85.2
105.9
118.9 | 43. 4
33. 8
44. 9
61. 9
48. 5 | 59.9
59.8
59.7
59.7
59.7 | 0.015
0.000
0.744
0.044
0.455 | 7.7
5.1
0.0
0.7
1.6 | 12.7
12.6
12.5
12.5
12.4 | | 21
22
23
24
25 | 30.087
30.240
29.886
29.939
29.939 | 66.6
68.7
60.8
58.1
64.8 | 53.0
45.3
48.5
43.7
40.1 | 13.6
23.4
12.3
14.4
24.7 | 59.1
57.0
54.6
50.9
52.6 | + 3.2
+ 1.4
- 0.8
- 4.4
- 2.6 | 54.3
52.0
49.4
46.2
48.5 | 49.9
47.1
43.8
40.5
44.0 | 9.2
9.9
10.8
10.4
8.6 | 22. 8
22. 0
19. 1
18. 0
22. 0 | 0.8
1.9
3.3
2.5
1.0 | 72
69
67
68
73 | 120.5
127.2
111.3
111.5
124.1 | 45. 4
33. 8
41. 5
34. 6
24. 7 | 59.7
59.7
59.3
59.2
59.1 | 0.035
0.072
0.002
0.000
0.000 | 6.3
9.1
3.3
6.1
6.7 | 12.3
12.3
12.2
12.2
12.2 | | 26
27
28
29
30 | 29.937
29.973
29.977
29.972
30.255 | 66.6
66.7
63.4
65.0
58.9 | 51.4
48.6
51.2
49.6
40.5 | 15. 2
18. 1
12. 2
15. 4
18. 4 | 58. 2
55. 8
57. 3
57. 5
50. 0 | + 3.0
+ 0.7
+ 2.4
+ 2.8
- 4.4 | 53.4
52.2
54.3
54.0
44.4 | 48.9
48.7
51.6
50.8
36.9 | 9.3
7.1
5.7
6.7
13.1 | 21.6
16.2
8.8
15.0
24.2 | 1.8
1.2
2.6
1.5
2.9 | 71
77
82
78
61 | 117.2
117.1
90.1
89.7
113.2 | 44. 4
39. 7
39. 6
42. 0
32. 5 | 59.0
58.7
58.5
58.6
58.3 | 0.000
0.000
0.000
0.011
0.000 | 6.0
4.7
0.3
1.0
8.7 | 12.0
11.9
11.9
11.8
11.8 | | Means | 29.900 | 71.5 | 51.5 | 20.0 | 61.2 | + 4.0 | 56.4 | 52. 1 | 9.1 | 19.7 | 1.8 | 72.6 | 119.5 | 40.9 | 59.8 | Sum
1.533 | 5.1 | 12.7 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.900 in., being 0.082 in. higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR The highest in the month was 83°.7 on September 11; the lowest in the month was 40°.1 on September 25; and the range was 43°.6. The mean of all the highest daily readings in the month was 71°.5, being 5°.3 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 20°.0, being 3°.5 greater than the average for the 65 years, 1841-1905. The mean for the month was 61°.2, being 4°.0 higher than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RES | SULTS | OF THE | METEO | ROLOGICAL O | BSERVATIONS | | | |-----------------------------|--|---|--|--------------------------------------|--|---|----------------------------------|---|--|----------------------------------|--|---|---| | | | | OF THE
TSKY | | SEI | WIND AS DEDUC
F-REGISTERING | | | | | | | | | | Pol | aris | δ
MIŅ | URSÆ
KORIS | | OSLER'S | | | Robin-
son's | | CLOUDS AND | WEATHER | | | Month
and
Day
1947 | 1on | n of
posure | lon | n of
posure | General 1 |)irection | on | ssure
the
e Foot | 1 Move—
the Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A. M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to G ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Sept.1
2
3
4
5 | hours
8.5
8.5
0.0
7.6
6.4 | 1.00
1.00
0.00
0.90
0.75 | hours
8.5
8.5
0.0
7.5
6.1 | 1.00
1.00
0.00
0.89
0.72 | Calm: ENE
NE: NNE
Calm
Calm
Calm | E: ENE
NE: ENE :Calm
Calm
Calm
WSW: WNW | 1bs. 3.0 1.5 0.3 0.3 0.6 | 1bs. 0.17 0.08 0.01 0.01 0.03 | miles
209
178
63
79
114 | b
bw
bwm
cmf
bw | bc Cu Frcu y b c Frcu y bc m b Acu y c f b Acu y b m b Z ₀ y | b Ci y c Stcu y b c Acu y bc c Acu Cu y b Frcu y | b
c m f
c b
c b | | 6
7
8
9
10 | 1.7
1.3
7.8
9.0
9.0 | 0. 19
0. 14
0. 87
1. 00
1. 00 | 1.1
0.7
7.7
9.0
9.0 | 0.13
0.08
0.86
1.00
1.00 | Calm: NNW
Calm: SSW
SW: WSW
SW: WSW
SW: WSW | Calm
SSW
WSW: NNW: NW
WSW: SW
WSW: SW | 0.3
1.0
2.2
8.1
2.8 | 0.03
0.06
0.15
0.77
0.28 | 93
155
224
368
280 | bccbcrcb | c b Ci y b c Stcu Cu c Stcu bc c Cist so-ha y c bc Frcu Ci y | b Frcu c y
c Stcu
c Stcu Frcu Ci
c Ci so-ha be y
be b Cu Ci y | c d c c b b | | 11
12
13
14
15 | 5. 5
6. 1
5. 3
9. 7
6. 9 | 0.62
0.68
0.55
1.00
0.71 | 4.9
5.1
5.0
9.7
6.4 | 0.55
0.57
0.52
1.00
0.66 | SSW: Calm
SW: SSW
S: SSW: SW
Calm: SSW
SW: SSW | SW
SW: SSW
W: SW: Calm
SW
SSW: Calm | 4.1
3.0
4.1
4.6
2.5 | 0. 20
0. 28
0. 25
0. 28
0. 19 | 231
273
252
233
209 | bw bcc bc bc bc bc | c b y c Nost 1do c b c Ast do c Ast d b bc b Frcu y | b Ci b c prhn y
c Nbst dorc
c Nbst ir
d c Acu bc
b c Cu y | bc
c b
c b
b
c r _o c b | | 16
17
18
19
20 | 8.9
2.3
0.0
2.3
8.3 | 0.91
0.24
0.00
0.23
0.81 | 8.1
1.1
0.0
2.3
8.2 | 0.83
0.12
0.00
0.23
0.80 | SSW
Calm
Var.: ENE
Calm
SSW | SW: WNW
Calm
ENE
Calm: SE: S
SSW | 7.5
0.3
3.4
1.8
3.4 | 0.60
0.01
0.21
0.02
0.21 | 311
91
210
121
237 | b w bc c t 1 R r c c o m f c ir | b bc Ci so-ha c y
bc Cu Ci y
c Nost
o f m
c Ast Nost | c Nbst p b y bc Cu Ci c y c Nbst ro r c mo Nbst r m c c Nbst p R c | b
bcc
c
ctlrbc
cb | | 21
22
23
24
25 | 9.8
1.6
9.4
9.3
6.0 | 0.96
0.15
0.92
0.91
0.59 | 9.3
1.2
8.7
9.2
4.9 | 0.91
0.12
0.85
0.90
0.48 | SW:
NW
WSW
W: NNW
N
Calm | NW: NNW
WSW: SW
NW: NNW
N: NE: Calm
NE: E | 7.8
5.0
11.5
1.7
0.7 | 0. 57
0. 39
0. 48
0. 15
0. 03 | 326
290
326
198
109 | bc
b
cdoc
bmo
bcbfx | c ro c bc Cu b Cist y c Cist so-ha c Stcu b mo c Stcu b Ci y | bc Frcu y b Cu Ci y c c Acu y b c Stcu bc b c Cu Stcu y | b c r do c b mo bc b f c b | | 26
27
28
29
30 | 7.9
3.2
1.2
9.4
10.5 | 0.77
0.30
0.11
0.89
1.00 | 7.7
1.3
1.1
9.2
9.4 | 0.75
0.12
0.10
0.88
0.89 | NE
NE: NNE
WSW
WSW
NNW: Calm | NE
Calm
SW: WSW
W: NNW
Calm | 11.0
2.0
2.0
3.0
2.0 | 0.78
0.06
0.14
0.22
0.06 | 378
141
235
274
133 | c b f c b c iro b w | c bc Stcu y b f c bc Cu Cist b c Stcu c r _q c Stcu Ast b Ci y | b Ci y bc Cist c Stcu c bc c Stcu b z _o Ci y | b c b f bc c c b hu-ha b f | | Means | 6.1 | 0.64 | 5.7 | 0.60 | •• | •• | •• | 0. 22 | 211 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 56°.4, being 2°.3 higher than The mean Temperature of the Dew Point for the month was 52°.1, being 1°.0 higher than The mean Degree of Humidity for the month was 72.6, being 7.3 less than The mean Flastic Force of Vapour for the month was 0.392 in., being 0.013 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 5.6. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.399. The maximum daily amount of Sunshine was 9.7 hours on September 10 and 11. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 141°.0 on September 10; and the lowest reading of the Terrestrial Radiation Thermometer was 24°.7 on September 25. The Proportions of Wind referred to the cardinal points were N.16, E.9, S.22, W.25, calm or nearly calm conditions 28, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 11.5 lbs. on the square foot on September 23. The mean daily Horizontal Movement of the Air for the month was 211 miles; the greatest daily value was 378 miles on September 26, and the least daily value was 63 miles on September 3. Rain (0.005 in. or over) fell on 10 days in the month, amounting to 1.533 in., as measured by gauge No.6 partly sunk below the ground; being 0.615 in. less than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | не мет | OROLOG | ICAL (| BSER | VATIONS | | | | | | |----------------------------|---|--------------------------------------|--------------------------------------|---|---|--|--------------------------------------|---|------------------------------------|---|---------------------------------|----------------------------|--|---|---|---|---------------------------------|--------------------------------------| | | BAROMETER | | | T | EMPERATU | RE | | | | | | | TE | MPERATUR | E | w . | | | | Month
and | Hourly
rrected
to 32°
elt) | | | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai
and | rence be
r Temper
Dew Poi
mperatur | ature
nt | of Humidity
tion = 100) | Of Rad | iation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32 ³
Fahrennelt) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collection No.6, whose surface above t | Sun-
shine | Horizon | | | in. | 0 | 0 | ٥ | 0 | 0 | ٥ | 0 | 0 | ٥ | 0 | | 0 | 0 | 0 | in. | hours | hours | | Oct. ₁ 2 3 4 5 | 30. 187
30. 140
30. 272
30. 230
30. 013 | 62.5
65.0
61.7
67.2
67.8 | 36.0
40.3
44.2
37.7
43.2 | 26. 5
24. 7
17. 5
29. 5
24. 6 | 48.9
53.3
53.1
51.4
51.2 | - 5.2
- 0.4
- 0.2
- 1.6
- 1.6 | 44.5
50.0
48.1
47.5
48.6 | 38.9
46.6
42.5
43.1
45.8 | 10.0
6.7
10.6
8.3
5.4 | 22.3
13.9
22.1
22.9
19.4 | 1.4
0.7
1.7
1.1
0.4 | 68
78
67
73
82 | 105. 1
108. 7
117. 6
118. 2
105. 1 | 25. 1
28. 8
29. 1
24. 1
24. 0 | 58. 2
58. 0
57. 8
57. 7
57. 6 | 0.000
0.000
0.000
0.000
0.000 | 6.7
4.2
9.5
8.8
4.3 | 11.7
11.6
11.6
11.5
11.4 | | 6
7
8
9
10 | 29. 918
29. 889
29. 843
29. 954
30. 101 | 71.2
69.3
67.3
68.0
69.0 | 41.2
48.3
53.0
46.2
53.3 | 30.0
21.0
14.3
21.8
15.7 | 55.4
58.7
58.9
57.0
60.0 | + 2.9
+ 6.4
+ 6.9
+ 5.4
+ 8.7 | 50.6
55.0
56.5
53.4
56.5 | 45. 7
51. 8
54. 6
50. 0
53. 5 | 9.7
6.9
4.3
7.0
6.5 | 23.6
15.9
10.6
21.4
15.5 | 1.0
1.4
0.8
0.4
1.2 | 70
78
85
77
79 | 111.5
103.0
95.3
120.1
105.0 | 28.0
35.2
42.7
30.8
41.1 | 57.4
57.0
56.8
56.8
56.9 | 0.000
0.000
0.000
0.000
0.004 | 7.4
2.8
0.2
5.7
1.5 | 11.4
11.3
11.3
11.2
11.1 | | 11
12
13
14
15 | 30. 283
30. 264
30. 113
29. 998
29. 999 | 66.8
71.8
69.6
55.9
64.4 | 52.5
50.7
48.5
42.2
37.7 | 14.3
21.1
21.1
13.7
26.7 | 59.3
59.0
57.1
52.4
51.8 | + 8.4
+ 8.4
+ 6.8
+ 2.3
+ 1.9 | 56.5
55.8
54.5
50.8
48.1 | 54. 2
53. 2
52. 3
49. 2
44. 0 | 5.1
5.8
4.8
3.2
7.8 | 12.8
17.1
14.9
6.3
18.3 | 0.6
1.0
0.0
0.9
0.7 | 83
81
84
89
74 | 108. 3
124. 1
121. 0
59. 6
115. 1 | 38.6
39.6
34.1
33.0
23.8 | 56. 7
56. 8
56. 8
56. 7
56. 7 | 0.000
0.000
0.001*
0.009
0.000 | 0.9
5.9
2.5
0.0
4.9 | 11.0
11.0
10.9
10.9
10.8 | | 16
17
18
19
20 | 30.048
30.113
30.234
30.265
30.101 | 59.9
59.7
57.0
57.2
52.6 | 50.8
47.5
42.9
37.7
33.3 | 9. 1
12. 2
14. 1
19. 5
19. 3 | 56. 3
53. 9
51. 8
47. 6
45. 5 | + 6.5
+ 4.3
+ 2.5
- 1.5
- 3.3 | 52.9
51.1
47.8
44.0
42.0 | 49. 7
48. 4
43. 3
39. 4
37. 1 | 6.6
5.5
8.5
8.2
8.4 | 10.7
11.8
14.0
18.2
16.3 | 1.6
0.8
4.9
1.5
1.6 | 78
81
73
73
73 | 70.3
86.3
79.9
95.3
101.6 | 42.0
36.0
33.0
23.9
24.0 | 56. 6
56. 4
56. 3
56. 2
56. 0 | 0.000
0.000
0.000
0.000
0.000 | 0.0
1.0
0.0
2.8
0.6 | 10.7
10.7
10.6
10.5
10.5 | | 21
22
23
24
25 | 29. 910
29. 680
29. 713
29. 837
29. 906 | 58.7
60.2
61.6
57.6
57.9 | 29.3
44.1
44.8
43.3
44.7 | 29. 4
16. 1
16. 8
14. 3
13. 2 | 42.8
52.5
52.4
49.4
51.4 | - 5.8
+ 4.2
+ 4.3
+ 1.5
+ 3.7 | 39.9
50.5
50.0
48.1
48.4 | 35. 7
48. 6
47. 5
46. 7
45. 2 | 7.1
3.9
4.9
2.7
6.2 | 18. 6
10. 4
12. 5
6. 7
12. 7 | 2.2
1.2
0.8
0.0
2.4 | 75
86
83
90
79 | 91.3
71.0
114.6
79.6
101.2 | 16.0
26.7
31.0
27.8
38.5 | 55.8
55.7
55.6
55.3
55.0 | 0.000
0.019
0.070
0.032
0.000 | 6.1
0.3
5.5
1.5
4.9 | 10.4
10.3
10.3
10.2
10.1 | | 26
27
28
29
30 | 30.039
29.931
29.900
29.773
29.597 | 51.7
49.9
50.4
49.4
49.0 | 44.7
45.3
44.4
37.0
32.3 | 7.0
4.6
6.0
12.4
16.7 | 47.1
47.5
47.3
44.6
41.9 | - 0.5
- 0.0
- 0.1
- 2.7
- 5.3 | 42.3
42.3
42.6
41.7
40.5 | 35. 5
34. 8
36. 1
37. 7
38. 6 | 11.6
12.7
11.2
6.9
3.3 | 21.3
14.9
15.8
13.4
8.2 | 4.2
9.9
8.9
1.3
0.0 | 64
61
65
76
88 | 103.5
99.1
89.0
76.7
66.7 | 39.0
41.4
40.8
19.9
16.1 | 55. 0
54. 8
54. 7
54. 4
54. 3 | 0.000
0.000
0.000
0.005
0.000 | 5.3
2.5
0.3
0.7
0.0 | 10.1
10.0
10.0
9.9
9.8 | | 31 | 29.611 | 52.8 | 45.3 | 7.5 | 49.0 | + 1.9 | 46.1 | 42.6 | 6.4 | 9.1 | 3.4 | 79 | 59.8 | 35.0 | 54.0 | 0.000 | 0.0 | 9.8 | | Means | 29.996 | 60.7 | 43.3 | 17.4 | 51.9 | + 1.9 | 48.6 | 44.9 | 7.0 | 15.2 | 1.9 | 77.2 | 96.9 | 31.3 | 56.3 | Sum
0.140 | 3.1 | 10.7 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 8) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air
Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. * Rainfall (Column 16). The amount entered on October 13 is derived from wet fog. The mean reading of the Barometer for the month was 29.996 in., being 0.268 in. higher than the average for the 65 years, 1841-1905. ### TEMPERATURE OF THE AIR The nighest in the month was 71°.8 on October 12; the lowest in the month was 29°.3 on October 21; and the range was 42°.5. The mean of all the highest daily readings in the month was 60°.7, being 3°.7 higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 43°.3, being 0°.5 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 17°.4, being 4°.2 greater than the average for the 65 years, 1841-1905. The mean for the month was 51°.9, being 1°.9 higher than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RE | SULTS | OF THE | METE(| OROLOGICAL | OBSERVATIONS | | | |-----------------------------|--|---|----------------------------------|--------------------------------------|---|--|----------------------------------|--|---------------------------------------|---|---|--|---| | | | RECORD
NIGH | OF THE
IT SKY | | SEL | WIND AS DEDUC
F-REGISTERING | ED FROM | i
Ters | | | | | | | | Pol | aris | δ
MIN | URSAE
IORIS | | OSLER'S | | | Robin-
son's | | CLOUDS AN | ID WEATH ER | | | Month
and
Day
1947 | 1on | on of
posure | .1on | tion of
Exposure | General I | Direction | on | ssure
the
re Foot | ul Move-
the Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fracti
Total Ex | A. M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | e ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Oct.1
2
3
4
5 | hours
8.0
7.9
10.5
8.7
11.0 | 0.76
0.75
1.00
0.79
1.00 | hours 7.9 7.5 10.5 8.5 11.0 | 0.76
0.71
1.00
0.77
1.00 | Calm
Calm:E
Calm:E
Calm
Calm | Calm
ENE
E: Calm
Calm :SW | 1bs. 0.0 2.5 3.1 0.2 0.0 | 1bs.
0.00
0.15
0.13
0.01
0.00 | miles
72
185
199
66
63 | bfx
bfx
bx
bxf
bFe | b f bc Cist so-ha y b f m c Stcu b y b f b y F b f | bc Ci b zo
c Stcu
b y
b y
b m f | bcbf
cdocb
bw
fbm | | 6
7
8
9
10 | 6.6
3.7
8.0
7.0
8.6 | 0.60
0.33
0.73
0.64
0.78 | 5.0
1.4
7.3
5.4
7.9 | 0.45
0.12
0.66
0.49
0.71 | Calm:SW
Calm
SSW
Calm:WSW
SW | Calm
Calm:SE:SSW
SW:WSW
SW
WSW:SW | 0.1
0.2
0.5
1.3
3.0 | 0.00
0.01
0.04
0.07
0.16 | 108
110
158
176
227 | bmw cbm cbccmow bwf bwc | b bc Acu Ast y b f bc Cist so-ha y c Stou mo b f b Frou y c Ci Cist so-ha | b Ci z _o y bc so-ha c Acu m _o c Stcu m _o r _o b y c Stcu Acu c Acu r _o | bcfcm
c
cbm
crocb
cmb | | 11
12
13
14
15 | 7.8
7.7
0.8
10.7
0.0 | 0.68
0.67
0.07
0.93
0.00 | 6.3
5.7
0.2
10.5
0.0 | 0.55
0.49
0.02
0.91
0.00 | SW: Calm
Calm
Calm:W
Calm:W
SW: WSW | SW:SSW
Calm
Calm
NNW:Calm
WSW | 1.2
0.1
0.1
1.0
3.5 | 0. 03
0. 00
0. 00
0. 03
0. 20 | 156
100
78
125
277 | bwc
bwc
fFe
cdm _o f
bxc | c Stcu
c Stcu b Cu
Fe bc Ci m
c Nbst 1d m
c bc Ci Acu | c Stcu b b y bc c Ast mo id c St b mo bc Ci c Stcu | bm
bmf
cm
bmcb | | 16
17
18
19
20 | 4.0
0.0
10.5
10.5
11.9 | 0.35
0.00
0.88
0.87
0.99 | 0.8
0.0
10.3
8.6
5.7 | 0.07
0.00
0.86
0.72
0.48 | WSW: W Calm: WSW NE: Calm Calm: SSE Calm: E | WSW: Calm
W: NW: NE
Calm
ENE
E: Calm | 1.3
1.3
0.2
1.0
1.5 | 0.10
0.09
0.01
0.05
0.05 | 204
176
94
136
144 | c m _o
c w
c m _o
b x m
b c b w | c Stcu Ast mo
o c Stcu mo
c Acu Stcu mo
c f b c Stcu y
c bc c Ast | c Stcu mo
c bc c Stcu mo
c Stcu mo
c bc Ci so-ha b y
c Acu b m | bc c m _o c m _o c b m b b bc x m | | 21
22
23
24
25 | 7.1
8.1
7.5
2.9
5.8 | 0. 59
0. 67
0. 63
0. 24
0. 47 | 4.8
7.3
7.3
2.8
5.2 | 0.40
0.61
0.60
0.23
0.43 | Calm
Calm: SE: S
SSE: SE
Calm
NE: ENE | Calm
S
SE: E: Calm
NE: Calm
ENE: NE | 0.0
3.0
2.2
0.4
4.0 | 0.00
0.13
0.09
0.01
0.23 | 88
214
185
102
281 | bc m x f
c b w c
c ir
b f Fe
c d _o m | b f
c Nbst ro r
c bc Cu Ci so-ha
Fe b f
c b Cu | b m f
ro c bc Cu Acu
c b Cu m
crg c Nbst p m
b Ci c | cf
bcbc
bmf
bbclu-hac
cbc | | 26
27
28
29
30 | 0.4
0.7
0.0
10.3
1.7 | 0.03
0.06
0.00
0.84
0.14 | 0.3
0.2
0.0
3.5
0.8 | 0.02
0.01
0.00
0.28
0.06 | ENE: E
NE: ENE
NE: ENE
Calm: E | ENE
ENE
NE
E:Calm
E:ENE | 9.7
10.5
7.0
1.6
3.4 | 1. 14
1. 64
0. 78
0. 14
0. 19 | 434
494
364
172
197 | c
c
c d c
b x f | c bc Stcu y c bc Frcu y c Stcu y c Stcu m Fe c Acu m | b Frst c y bc c Frcu y c Stcu c Stcu c Acu Ci mo | c
c
c b m x
c hu-ha mo | | 31 | 7.6 | 0.62 | 5.3 | 0.44 | NE: NNE | NNW: NW | 1.2 | 0.13 | 207 | c m | c St m | c St mo | c b bc | | Means | 6.3 | 0.55 | 5.1 | 0.45 | •• | •• | •• | 0.18 | 180 | | | | | | No.of
Col.for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was $48^{\circ}.6$, being $0^{\circ}.7$ higher than The mean Temperature of the Dew Point for the month was 44°.9, being 0°.7 lower than The mean Degree of Humidity for the month was 77.2, being 7.7 less than The mean $\textit{Blastic Force of Vapour}\ \text{for the month was 0.299 in., being 0.009 in. less than}$ the average for the 65 years, 1841-1905. The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.1. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.291. The maximum daily amount of Sunshine was 9.5 hours on October 3. The highest reading of the Solar Radiation Thermometer was 124°.1 on October 12; and the lowest reading of the Terrestrial Radiation Thermometer was 16 .0 on October 21. The Proportions of Wind referred to the cardinal points were N. 10, E. 24, S. 12, W. 13, calm or nearly calm conditions 41, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 10.5 lbs. on the square foot on October 27. The mean daily Horizontal Movement of the Air for the month was 180 miles; the greatest daily value was 494 miles on October 27, and the least daily value was 63 miles on October 5. Rain (0.005 in. or over) fell on 5 days in the month, amounting to 0.140 in., as measured by gauge No.6 partly sunk below the ground; being 2.642 in. less than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII | - DAILY | RESULT | S OF TH | E METE | OROLOGI | [CAL -O | BSERV | ATIONS | | | | | | |----------------------------|--|--------------|--------------|----------------|-----------------------------------|--|-----------------------------------|-----------------------------------|-------------|---|-------------|--------------------------|-----------------------------|---------------------------|---|---|------------------------------|--------------| | | BAROMETER | | | 1 | EMPERATU | RE | | | | | | | TE | MPERATUF | Æ | g) | | | | Month
and | Hourly
rrected
1 to 328
e1t) | | , | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
r Temper
Dew Poi
mperatur | ature
nt | f Humidity
ion = 100) | Of Rad: | lation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32
Fahrenhelt) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree of
(Saturation | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collection No.6, whose surface above t | Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | ٥ | | 0 | 0 | 0 | in. | hours | hours | | Nov.1 | 29.882
29.599 | 60.3
57.0 | 39.3
48.8 | 21.0
8.2 | 51.4
54.4 | + 4.4
+ 7.6 | 49.0
52.1
 46.5
49.9 | 4.9
4.5 | 8.0
8.9 | 0.7
2.0 | 83
85 | 80.0
70.2 | 26.5
40.0 | 54.0
53.9 | 0.000
0.037 | 0.0 | 9.7
9.7 | | 3 4 | 29.643
29.848 | 60.6
54.6 | 45.2
44.0 | 15.4
10.6 | 50.7 | + 4.1
+ 4.3 | 46.7 | 42.0
46.5 | 8.7
4.2 | 20.9
6.9 | 1.9 | 72
86 | 109.0
62.0 | 34.6
34.4 | 53.8
53.7 | 0.003 | 7.7
0.0 | 9.6
9.5 | | 5 | 30.062 | 55.7 | 38.6 | 17.1 | 51.3 | + 5.2 | 48.2 | 44.9 | 6.4 | 14.3 | 0.0 | 78 | 86.0 | 30.5 | 53.7 | 0.041 | 6.0 | 9.5 | | 6 7 | 30.194
30.130 | 44.9
55.7 | 34.6
34.0 | 10.3
21.7 | 39.4
45.3 | - 6.4
- 0.1 | 39.1
43.5 | 38.7
41.2 | 0.7
4.1 | 1.6
12.4 | 0.0 | 97
86 | 50.0
85.0 | 26. 2
26. 5 | 53.6
53.5 | 0.000
0.001* | 0.0
3.2 | 9.4
9.4 | | 8 9 | 30.012
29.759 | 61.9
60.0 | 46.8
51.6 | 15.1
8.4 | 52.4
55.1 | + 7.4
+10.5 | 49.8
52.5 | 47.1
50.1 | 5.3
5.0 | 16.0
11.9 | 0.0
1.6 | 82
84 | 87.0
88.3 | 40.5
47.5 | 53.4
53.2 | 0.000
0.210 | 3.6
0.2 | 9.3 | | 10 | 29. 722 | 58.2 | 49.0 | 9.2 | 52.8 | + 8.5 | 49.1 | 45.2 | 7.6 | 13.3 | 1.6 | 75 | 83.0 | 35.8 | 53.0 | 0.158 | 3.2 | 9.2 | | 11
12 | 29.688
29.414 | 60.8
61.0 | 47.7
50.0 | 13.1
11.0 | 55.7
57.5 | +11.7
+13.8 | 52. 2
54. 3 | 48.8
51.4 | 6.9
6.1 | 12.5
7.0 | 0.5 | 77
80 | 77.8
70.3 | 37.0
44.0 | 53.1
53.0 | 0.063
0.040 | 0.2 | 9.2
9.1 | | 13 | 29.643
29.720 | 52.0
46.0 | 43.0 | 9.0
7.5 | 47.7 | + 4.2 | 43.3 | 37.4
38.0 | 10.3 | 17.0
7.1 | 7.3 | 68
84 | 82.4
52.8 | 36.0
29.5 | 53.0
53.0 | 0.000
0.180 | 1.9 | 9.0
9.0 | | 14
15 | 29.720 | 44.3 | 35.0 | 9.3 | 40.9 | - 2.2 | 38.0 | 33.3 | 7.6 | 17.2 | 0.7 | 74 | 61.0 | 27.0 | 52.9 | 0.041 | 0.8 | 8.9 | | 16 | 29.862 | 41.7 | 31.6 | 10.1 | 36.0 | - 6.8 | 33.9 | 30.2 | 5.8 | 11.5
12.7 | 1.3 | 79
81 | 51.7
50.0 | 21.6 | 52. 7
52. 4 | 0.001* | 0.0 | 8.9
8.8 | | 17
18 | 29.791
29.556 | 40.0
37.7 | 30.7
31.0 | 9.3
6.7 | 34.7
35.0 | - 7.9
- 7.4 | 32.9
33.3 | 29.8
30.3 | 4.7 | 10.4 | 1.0 | 83 | 47.0 | 27.5 | 52.0 | 0.030 | 0.2 | 8.8
8.7 | | 19
20 | 29.585
29.899 | 42.4
59.6 | 36.8
37.7 | 5.6
21.9 | 39.8
53.2 | - 2.5
+11.0 | 38.7
51.8 | 37.1
50.5 | 2.7
2.7 | 6.2
4.9 | 1.0
0.5 | 90
91 | 43.9
68.0 | 28.8
33.0 | 51.8
51.4 | 0.202 | 0.0 | 8.7 | | 21 | 29.984 | 60.8 | 58.0 | 2.8 | 59.3 | +17.2 | 57.1 | 55.4 | 3.9 | 6.3 | 3.0 | 87 | 74.1 | 54.2 | 51.3 | 0.002 | 0.0 | 8.6 | | 22
23 | 29.923
29.920 | 61.0
61.5 | 57.8
44.1 | 3.2
17.4 | 59.6
56.4 | +17.5
+14.4 | 57.4 | 55.7
48.7 | 3.9
7.7 | 7.6
13.8 | 1.6
3.0 | 87
76 | 70.3
85.1 | 52.7
36.3 | 51.6
51.6 | 0.011
0.057 | 0.0
2.0 | 8.6
8.5 | | 24
25 | 30.017
29.810 | 48.9
43.8 | 39.5
35.0 | 9.4
8.8 | 44.1 | + 2.1 | 40.3
36.5 | 34.6
29.7 | 9.5
10.9 | 15.6
18.4 | 3.9
5.1 | 69 | 75.1
71.2 | 31.5
28.0 | 51.7
51.7 | 0.000 | 5.6 | 8.5
8.4 | | 26 | 29.695 | 38.7 | 29.6 | 9.1 | 34.4 | - 7.4 | 30.9 | 25.0 | 9.4 | 16. 2 | 3.0 | 65 | 59.7 | 21.0 | 51.4 | 0.000 | 5.0 | 8.4 | | 27
28 | 29. 553
29. 446 | 39.3
40.9 | 27.0
30.1 | 12.3 | 32.8
35.2 | - 8.9
- 6.3 | 31.7 | 30.0
31.3 | 2.8
3.9 | 6.2 | 0.0 | 88
86 | 41.0
59.0 | 17.7
23.0 | 51.1 | 0.002
0.000 | 0.0 | 8.4
8.3 | | 29 | 29.274 | 39.0 | 34.0 | 5.0 | 36.9
31.4 | - 4.3
- 9.6 | 35.6
30.8 | 33.5 | 3.4
1.7 | 4.3 | 1.3 | 87
93 | 43.9
39.0 | 28.0
10.0 | 50.7 | 0.008 | 0.0 | 8.3 | | 30 | 29.308 | 34.0 | 25.0 | 7.0 | 71.4 | 7.0 | 50.8 | 27.1 | | J., | | | | | | Sum | ļ | | | Means | 29.751 | 50.7 | 39.8 | 10.9 | 45.9 | + 2.4 | 43.5 | 40.4 | 5.5 | 10.6 | 1.6 | 81.2 | 67.5 | 31.7 | 52.4 | 1.100 | 1.5 | 8.9 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. * Rainfall (Column 16). The amounts entered on November 7 and 16 are derived from frost. The mean reading of the Barometer for the month was 29.751 in., being 0.014 in. lower than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR The highest in the month was 61°.9 on November 8; the lowest in the month was 25°.0 on November 30; and the range was 36°.9. The mean of all the highest daily readings in the month was 50°.7, being 1°.8 higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 39°.8, being 1°.4 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 10°.9, being 0°.4 greater than the average for the 65 years, 1841-1905. The mean for the month was 45°.9, being 2°.4 higher than the average for the 65 years, 1841-1905. | Nov.1 S.1 0.41 2.5 0.20 WSW:SW SW 1.0 0.07 197 bc m f x c f Acu mo c Rbst ro c Mbst ro c Rbst | | | OBSERVATIONS | ROLOGICAL (| METEC | OF THE | SULTS | - DAILY RE | TABLE XVII. | | | | | | |---|-----------------------------------|--|--|---|--------------------------|--------------------------------------|--------------------------|------------------------------------|-----------------------------|----------------------|---------------------------|-------------------------|---------------------------|----------------| | Month and Day 1947 | | | | | | | | | SEL | | OF THE
TSKY | RECORD
NIGH | | | | and Day 1947 g | | ID WEATHER | CLOUDS A | | Robin-
son's | | | OSLER'S | | URSÆ
WORIS | δ
MIN | laris | Pol | | | Nov.1 5.1 0.41 2.5 0.20 WSW:SW SW 1.0 0.07 197 bc m f x c f Acu mo c Acu mo c Mbst ro rocal mo c Mbst | · | | | | 1 Move—
the Air | the
e Foot | on | Direction | General I | n of
posure | 1on | n of
posure | 1on | and | | Nov.1 | 8 ^h to 24 ^h | 12 ^h to 18 ^h | 6 ^h to 12 ^h | O ^h to e ^h | Horizonta
ment of t | Mean of
24 Hourly
Measures | Greatest | P.M. | A. M. | Fractic
Total Ex | Durat | Fractic
Total Ex | Durat | · | | 7 | lo | c Nbst rr
cc Nbst Cu po bc
c Nbst Ido prhn c | c Stcu
b Frcu y
c Nbst do | c id _o
b w
bc <i>lu-ha</i> c | 197
352
322
217 | 1bs.
0.07
0.60
0.34
0.13 | 1.0
8.3
4.4
1.7 | S:SW
WSW
SW | SSW
SW: WSW
WSW | 0.80
0.64
0.02 | 2.5
10.0
8.0
0.3 | 0. 82
0. 72
0. 02 | 5.1
10.3
9.0
0.3 | 2
3
4 | | 12 3.4 0.26 2.1 0.16 WSW: SW SW: WSW: NW 15.0 2.47 656 c q c Nbst 1r _o c r c Cu Ci b c Cist so-ha b | | c b c Ast Cist oc Ci y b | c b c Acu f
c bc Ci m
c Nbst ir c p | cxf
cm
cir | 144
234
320 | 0.06
0.11
0.35 | 2.2
1.8
4.2 | SSW: SW
SW
WSW:SSW | Calm:SW
WSW
SW | 0.03
0.33
0.00 | 0.4
4.3
0.0 | 0.08
0.39
0.00 | 1.0
5.1
0.0 | 7
8
9 | | | rr | crcCuCi
ccCistso-hab
cNbstdordom | c Nost iro
c b
Frcu
c Ast m | c q
c b c
b x c m | 656
313
169 | 2.47
0.41
0.06 | 15.0
6.0
0.8 | SW: WSW: NW
WNW: W
WSW: Calm | WSW: SW
NW: W
W:WSW | 0.16
0.68
0.00 | 2.1
8.9
0.0 | 0. 26
0. 82
0. 00 | 3.4
10.7
0.0 | 12
13
14 | | 18 0.0 0.00 0.0 0.00 Calm:E E:ENE 0.5 0.03 133 c s _o s s _o c Stcu m _o c Acu m _o c rs | cx
sm _o
fm | oc Cist so-ha c m | b bc Ci Frou f m
s so c Stou mo
rs o St mo | bxc
cs _o
rsrsm _o | 182
133
176 | 0.07
0.03
0.23 | 1.1
0.5
3.7 | NW: Calm
E: ENE
E: Calm | WSW: W
Calm:E
E: ESE | 0.00
0.00
0.13 | 0.0
0.0
1.7 | 0.08
0.00
0.19 | 1.0
0.0
2.5 | 17
18
19 | | 21 | | c Frst iro c Frcu q r c y c Stcu c po c | c Acu Frst
c Acu Frst
b bc Frcu | c 1d _o
c
b | 532
478
390 | 1.46
1.13
0.66 | 14.8
20.4
5.4 | SW: WSW
WSW: NW
W: WSW | SSW: SW
WSW: SW
W | 0.17
0.87
0.44 | 2.3
11.8
5.9 | 0. 24
0. 89
0. 50 | 3.3
12.0
6.7 | 22
23
24 | | | <i>lu-ha</i> b x f
c m
c b | o be Cimo | bfcisf
cStbCim
cNbstiro | bx
cxf
cm | 179
269
273 | 0.13
0.27
0.27 | 2.5
2.5
2.2 | NNW: N
NNE: N
NNW | WSW: SW
N: NNE
N: NNW | 0.44
0.13
0.29 | 6.0
1.7
4.1 | 0.96
0.38
0.54 | 12.9
5.2
7.4 | 27
28
29 | | Means 5.7 0.43 4.4 0.34 0.49 293 | | | | | 293 | 0.49 | •• | • • | •• | 0.34 | 4.4 | 0.43 | 5.7 | Means | | No. of Col. for Ref. 19 20 21 22 23 24 25 26 27 28 29 30 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | Col.for | The mean Temperature of Evaporation for the month was 43°.5, being 1°.6 higher than The mean Temperature of the Dew Point for the month was 40°.4, being 0°.7 higher than The mean $\textit{Degree of Humidity}\ \text{for}\ \text{the month was 81.2, being 5.4 less than}$ The mean Flastic Force of Vapour for the month was 0.252 in., being 0.006 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.0. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.173. The maximum daily amount of Sunshine was 7.7 hours on November 3. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 109°.0 on November 3; and the lowest reading of the Terrestrial Radiation Thermometer was 10 .0 on November 30. The Proportions of Wind referred to the cardinal points were N.15, E.4, S.22, W.45, calm or nearly calm conditions 14, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 20.4 lbs. on the square foot on November 23. The mean daily Horizontal Movement of the Air for the month was 293 miles; the greatest daily value was 656 miles on November 12, and the least daily value was 37 miles on November 6. Rain (0.005 in. or over) fell on 14 days in the month, amounting to 1.100 in., as measured by gauge No.6 partly sunk below the ground; being 1.120 in. less than the average fall for the 65 years, 1841-1905. No. of Col. for Ref. | D | 80 | | | | GREEN | ICH ME | TEORO | LOGICA | L OBS | ERVAT | IONS, | 194 | 7. | | | | | ····· | |----------------------------|---|--------------------------------------|---|---------------------------------------|--------------------------------------|--|---|---|---------------------------------|---|---------------------------------|--|--------------------------------------|---|---|---|---------------------------------|---------------------------------| | | | | | TABLE | XVII. | - DAIL | RESUL | TS OF T | HE MET | EOROLO | GICAL | OBSER | VATIONS | | | * | | | | | BAROMETER | | | 7 | EMPERATU | RE | | | | | | | TE | PERATUR | Œ | 4) | | | | Month
and | Hourly
rrected
1 to 32°
leit) | | ١ | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
r Temper
Dew Poi
mperatur | rature
Int | Degree of Humidity
(Saturation = 100) | Of Radia | tion | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
1947 | Mean of 24 Hourly
Values (corrected
and reduced to 32°
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain colle
No.6, who
surface
above t | Sun-
shine | Horizon | | | in. | ٥ | ٥ | 0 | 0 | ٥ | 0 | ٥ | 0 | 0 | 0 | | 0 | 0 | 0 | in. | hours | hours | | Dec.1 2 3 4 5 | 29. 316
29. 234
29. 121
29. 120
28. 910 | 32.8
40.8
39.2
39.6
49.0 | 21.0
29.8
33.4
33.7
38.0 | 11.8
11.0
5.8
5.9
11.0 | 27.5
34.4
36.6
37.6
45.2 | -13.4
- 6.5
- 4.5
- 3.7
+ 3.7 | 26.8
32.7
35.7
37.2
42.8 | 25. 5
29. 8
34. 1
36. 7
39. 6 | 2.0
4.6
2.5
0.9
5.6 | 2.5
11.7
3.3
2.6
11.7 | 0.0
1.0
0.4
0.0
1.8 | 91
82
91
96
81 | 42.1
54.0
42.7
42.5
67.3 | 4.0
20.6
24.2
27.1
33.0 | 49.7
49.6
49.2
49.0
48.8 | 0.000
0.000
0.018
0.115
0.435 | 2.1
2.4
0.0
0.0
0.4 | 8.2
8.2
8.2
8.1
8.1 | | 6
7
8
9
10 | 29. 152
29. 635
29. 655
30. 125
30. 413 | 45.7
44.7
46.0
45.5
44.7 | 39.7
36.5
36.4
40.6
32.8 | 6.0
8.2
9.6
4.9
11.9 | 42.9
41.8
42.4
42.9
40.8 | + 1.4
+ 0.5
+ 1.4
+ 2.3
+ 0.4 | 42.2
40.9
41.0
41.5
38.2 | 41.3
39.8
39.1
39.6
34.1 | 1.6
2.0
3.3
3.3
6.7 | 2.3
3.9
8.5
5.5
13.8 | 0.0
0.0
0.0
2.1
1.2 | 94
92
88
88
77 | 56.8
56.6
52.6
57.0
57.3 | 29.7
30.0
29.8
35.7
24.0 | 48.6
48.5
48.4
48.3
48.3 | 0.339
0.000
0.303
0.010
0.000 | 0.1
0.0
0.0
0.1
0.5 | 8.1
8.0
8.0
8.0
8.0 | | 11
12
13
14
15 | 30.415
30.293
30.316
30.367
30.439 | 41.9
51.2
49.9
44.0
43.7 | 27.7
41.9
44.0
39.2
37.0 | 14.2
9.3
5.9
4.8
6.7 | 35.3
47.7
47.8
42.3
41.1 | - 4.9
+ 7.4
+ 7.3
+ 1.6
+ 0.3 | 33.6
46.3
46.2
40.1
39.5 | 30.9
44.7
44.4
36.9
37.3 | 4.4
3.0
3.4
5.4
3.8 | 14.1
4.1
3.9
9.5
6.0 | 0.0
1.4
1.7
1.8
0.7 | 83
89
88
81
86 | 46.0
52.5
50.7
48.1
49.0 | 16.7
38.0
41.0
34.0
30.4 | 48.2
48.2
48.1
48.0
48.0 | 0.000
0.000
0.000
0.004
0.000 | 0.0
0.0
0.0
0.0 | 7.9
7.9
7.9
7.9
7.9 | | 16
17
18
19
20 | 30.405
30.340
30.201
30.194
30.232 | 45.9
45.9
45.0
47.5
50.9 | 43.1
43.4
39.7
41.0
42.0 | 2.8
2.5
5.3
6.5
8.9 | 44.3
44.5
42.7
44.4
48.3 | + 3.6
+ 4.1
+ 2.7
+ 4.9
+ 9.3 | 42.6
43.0
42.0
42.4
46.5 | 40. 4
41. 1
41. 1
39. 8
44. 5 | 3.9
3.4
1.6
4.6
3.8 | 5.8
5.5
3.6
11.3
4.6 | 2.3
2.1
0.0
0.8
2.3 | 86
88
94
84
86 | 52.9
50.1
45.9
53.3
52.3 | 39.5
41.0
38.4
39.5
34.0 | 48.0
48.1
48.0
48.0
48.0 | 0.004
0.021
0.060
0.028
0.000 | 0.0
0.0
0.0
0.0 | 7.8
7.8
7.8
7.8
7.8 | | 21
22
23
24
25 | 30. 271
30. 111
30. 106
29. 913
29. 533 | 49.5
50.2
49.6
51.0
52.0 | 40.3
45.4
43.9
44.0
36.5 | 9. 2
4. 8
5. 7
7. 0
15. 5 | 45.3
47.7
47.2
48.0
47.6 | + 6.6
+ 9.3
+ 9.0
+ 9.8
+ 9.2 | 42. 6
43. 9
43. 3
45. 7
45. 4 | 39.0
39.0
38.3
43.0
42.9 | 6.3
8.7
8.9
5.0
4.7 | 10. 5
11. 0
12. 3
8. 3
7. 6 | 1.5
5.0
5.0
2.6
1.9 | 79
72
70
83
83 | 54.9
58.4
58.0
54.9
66.7 | 28. 4
38. 8
39. 2
41. 7
32. 0 | 48.1
48.0
48.0
48.1
48.1 | 0.000
0.000
0.000
0.045
0.370 | 0.0
0.0
0.1
0.0
0.0 | 7.8
7.8
7.8
7.8
7.8 | | 26
27
28
29
30 | 29. 577
29. 253
29. 071
29. 211
29. 333 | 45.5
55.8
50.2
40.8
36.0 | 36. 4
41. 4
39. 1
32. 3
29. 2 | 9.1
14.4
11.1
8.5
6.8 | 40.5
51.3
46.7
36.8
33.2 | + 1.9
+12.5
+ 7.8
- 2.2
- 5.7 | 38. 2
48. 7
43. 1
33. 4
31. 9 | 34.7
45.9
38.5
27.3
29.9 | 5.8
5.4
8.2
9.5
3.3 | 12. 5
12. 1
10. 0
14. 0
6. 5 | 1.4
0.6
6.5
6.1
0.8 | 79
82
72
67
86 | 64.2
57.5
59.7
64.3
41.8 | 31.0
37.0
32.1
25.7
19.3 | 48.0
48.2
48.0
47.9
47.8 | 0.135
0.160
0.042
0.000
0.035 | 4.6
0.0
0.0
5.4
0.0 | 7.8
7.9
7.9
7.9
7.9 | | 31 | 29.744 | 39.2 | 28.9 | 10.3 | 34.0 | - 4.7 | 32.8 | 30.7 | 3.3 | 11.4 | 0.0 | 87 | 46.6 | 18.9 | 47.6 | 0.026 | 0.4 | 7.9 | | Means | 29.807 | 45.6 | 37.4 | 8.2 | 42.2 | + 2.3 | 40.3 | 37.7 | 4.5 | 8.1 | 1.6 | 84.0 | 53.4 | 30.8 | 48.3 | Sum
2.150 | 0.5 | 7.9 | The results apply to the civil day, except Columns 19 to 22 (Record of the
Night Sky), which relate to the period extending from dusk on the civil day named, to dawn of the following day. 8 9 10 11 12 13 14 15 16 17 18 The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. 7 The mean reading of the Barometer for the month was 29.807 in., being 0.015 in. nigher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR The highest in the month was 55°.8 on December 27; the lowest in the month was 21°.0 on December 1; and the range was 34°.8. The mean of all the highest daily readings in the month was 45°.6, being 1°.4 higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 37°.4, being 1°.9 nigher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 8°.2, being 0°.5 less than the average for the 65 years, 1841-1905. The mean for the month was $42^{\circ}.2$, being $2^{\circ}.3$ higher than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RE | SULTS | OF THE | METEO | ROLOGICAL (| OBSERVATIONS | | | |-----------------------------|------------------------------------|---|------------------------------------|--------------------------------------|--|---|--|--|---------------------------------------|---|--|---|---| | | | | OF THE | | SEL | WIND AS DEDUC
F-REGISTERING | | | | | | | | | | Pol | aris | δ U
MIM | URSÆ
IORIS | | OSLER'S | | - | Robin-
son's | | CLOUDS | AND WEATHER | | | Month
and
Day
1947 | 1on | n of
osure | ion | n of
osure | General I | Direction | on | ssure
the
re Foot | l Move- | | 323323 | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A.M. | P .M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Dec.1 2 3 4 5 | hours 4.0 5.8 0.0 3.1 6.7 | 0. 29
0. 42
0. 00
0. 22
0. 48 | hours 1.3 4.6 0.0 2.9 4.5 | 0.10
0.34
0.00
0.21
0.33 | Calm
Calm
Calm
Calm
SE: SSE: S | Calm: ESE
NE
E: Calm
SW: Calm: SE
SW: SSW | 1bs.
0.3
1.7
0.2
0.5
15.0 | 1bs.
0.01
0.05
0.00
0.01
1.12 | miles
58
145
60
92
442 | bfx
cx
bcrocf
rocdm
crorR | Fbfx bcbFrcuxf cNbstirofm drfgF RcpcStcu | b c Acu Ci ff x b Acu mo c 1ro do m F c b Stcu c m c Acu Most bc | fcx bmo cirom cbxcro bcciRr | | 6
7
8
9
10 | 1.2
0.5
1.5
1.7
9.3 | 0.08
0.03
0.11
0.12
0.67 | 1.0
0.3
0.6
1.6
4.3 | 0.07
0.02
0.04
0.11
0.31 | SSE: SE
W: NW: NNW
Calm: SE: NW
N: NNE
NNE: Calm | SE: SW: WSW
NW: Calm
NW: N
NNE
Calm | 3.4
1.4
4.7
4.6
0.4 | 0.17
0.05
0.25
0.47
0.01 | 223
150
266
309
82 | c ir
c
c rr
c mo
c mo b x f | c Nost ir g
c Stcu m
ro c f c Acu Frst
c Frcu mo
c f c Frcu zo | c Nbst r ro c b
c Stcu m f
c Nbst ro c mo
do ro c Nbst mo
c Frcu zo b | bccfccrocmocmocbxf | | 11
12
13
14
15 | 0.0
0.4
0.8
5.5
0.0 | 0.00
0.03
0.06
0.39
0.00 | 0.0
0.0
0.4
4.1
0.0 | 0.00
0.00
0.03
0.29
0.00 | Calm: SW
Calm: NW
NNW: N: NNE
N: NNE
NNE: N | Calm: WSW
NW: NNW
N: NNE
NE
N | 0.1
1.0
3.6
1.4
2.0 | 0.00
0.04
0.16
0.15
0.12 | 126
154
233
247
207 | b x ff
c o ff
c b c m _o
c m _o
bc c m | bcxff ocidoff cStcum crocStcum cstcum | c Stou ff
c St f c mo
c Nbst 1do mo
c Stou mo
c Stou m | c ff
c m _o
c m _o
c ir _o m _o
c m | | 16
17
18
19
20 | 0.4
0.0
0.0
0.3
7.6 | 0.03
0.00
0.00
0.02
0.54 | 0.1
0.0
0.0
0.1
3.0 | 0.01
0.00
0.00
0.01
0.21 | N
N
N: NNE
NNW
NW: NNW | N
N
Calm
NW: NNW
NNW: NW | 4.3
5.2
4.2
3.2
1.1 | 0.45
0.69
0.35
0.24
0.08 | 327
381
225
287
189 | c ido mo
c d do mo
c do mo
r m c mo
c m | c Stcu mo c 1do Stcu mo c Nost do mo c Stcu mo c Stcu mo | c Frst do mo
c Stcu ido mo
c St do r o m
c Ast Frcu m
c St m | cdodomo
crdomo
crorm
cm
cbwm | | 21
22
23
24
25 | 0.4
2.7
0.4
3.1
3.5 | 0.03
0.20
0.03
0.22
0.25 | 0.3
1.5
0.1
3.0
2.9 | 0.02
0.10
0.01
0.21
0.21 | Calm: WSW: NW
NW: WNW
WSW: NW
WSW: SW
SW: WSW | NW
WNW: W: WSW
WNW: W: WSW
SW
Var.: SW: W | 4. 4
5. 9
4. 0
8. 6
15. 6 | 0. 30
0. 54
0. 54
0. 95
0. 98 | 276
358
342
438
420 | bwcmf
cm
c
c
ircb | c bc Ast f m
c Frou m _o
c Stou
c r c Stou
c so-ha c Ast | bc Ast c m c Acu Frst c Frcu c Stcu c r c R t 1 | c m
c
c
c ir
r c rr | | 26
27
28
29
30 | 2.2
0.4
13.5
13.2
11.4 | 0.15
0.03
0.98
0.96
0.83 | 0.0
0.0
13.0
12.7
10.3 | 0.00
0.00
0.95
0.93
0.75 | NW: WSW
SSW: SW
WSW
WSW
WSW | WSW: SW
SW: WSW
SW: WSW
WSW
NW: Calm | 9.5
14.0
14.3
9.0
2.2 | 0. 78
2. 16
1. 39
0. 95
0. 17 | 408
612
508
447
202 | rr c b x
rr r _o c
c r
b <i>lu-ha</i> x m
b c x m | b Cu c Stcu r c bc Cist so-ha b m c so c r s m | b bc Cu
c r ro c Stcu
bc Cist so-ha c r c
b Frcu y
s c Stcu b m | bc lu-ha c ro
c
b
b x
b m | | 31 | 0.9 | 0.06 | 0.1 | 0.01 | WSW | SW: SSW | 0.7 | 0.04 | 177 | bcsbm | b be Ci Freu f | c Ast Acu f m | cmr | | Means | 3.2 | 0.23 | 2.3 | 0.17 | •• | • • | | 0.43 | 271 | | | | | | No.of
Col.for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | | | 1 | | 1 | L | I | | 1 | I | 1 | | 1 | 1 | l | The mean Temperature of Evaporation for the month was 40°.3, being 1°.8 higher than The mean Temperature of the Dew Point for the month was 37°.7, being 1°.3 higher than The mean Degree of Humidity for the month was 84.0, being 3.5 less than The mean Elastic Force of Vapour for the month was 0.226 in. being 0.010 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 8.0. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.066. The maximum daily amount of Sunshine was 5.4 hours on December 29. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 67°.3 on December 5; and the lowest reading of the Terrestrial Radiation Thermometer was 4 .0 on December 1. The *Proportions of Wind* referred to the cardinal points were N.30, E.6, S.15, W.29, calm or nearly calm conditions 20, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 15.6 lbs. on the square foot on December 25. The mean daily Horizontal Movement of the Air for the month was 271 miles; the greatest daily value was 612 miles on December 27, and the least daily value was 58 miles on December 1. Rain (0.005 in. or over) fell on 16 days in the month, amounting to 2.150 in., as measured by gauge No.6 partly sunk below the ground; being 0.323 in. greater than the average fall for the 65 years, 1841-1905. TABLE XVIII (A). - HIGHEST AND LOWEST READINGS OF THE BAROMETER, REDUCED TO 32° FAHRENHEIT, AS EXTRACTED FROM THE PHOTOGRAPHIC RECORDS | MAXIMA | | MINIMA | | MAXIMA | | MINIMA | | MAXIMA | | MINIMA | | |---|--|--|--|---|--|---|--|---|---
--|--| | U.T., 1947. | Reading | U.T., 1947. | Reading | U.T., 1947. | Reading | U.T., 1947. | Reading | U.T., 1947. | Reading | U.T., 1947. | Reading | | d. h. m. | in. | d. h. m. | in. | d. h. m. | in. | d. h. m. | in. | d. h. m. | in. | d. h. m. | in. | | January | | January | | May | | May | | September | | September | | | 1. 10, 50 3. 22, 30 7. 3. 20 8. 8. 0 10. 9. 40 12. 2. 5 12. 10. 55 14. 3. 5 16. 2. 45 18. 10. 25 | 29. 900
30. 028
29. 655
29. 651
29. 861
29. 353
29. 488
29. 579
29. 868
30. 307 | 2. 2. 0
6. 3. 30
7. 19. 40
8. 22. 0
11. 16. 10
12. 5. 10
13. 13. 40
14. 11. 45
16. 21. 55
20. 17. 0 | 29. 687
29. 487
29. 572
29. 339
29. 212
29. 273
29. 115
29. 470
29. 752
30. 061 | 1. 21. 20
6. 19. 45
8. 23. 55
11. 9. 30
16. 15. 40
21. 11. 0
28. 8. 0 | 29. 957
29. 944
29. 834
29. 921
29. 866
30. 144
30. 036 | 3. 4. 55
8. 4. 0
9. 17. 10
14. 14. 0
18. 4. 0
24. 16. 45 | 29. 461
29. 689
29. 597
29. 504
29. 684
29. 533 | 6. 8. 40 10. 20. 50 12. 20. 15 14. 0. 0 15. 9. 35 17. 9. 20 22. 7. 35 27. 9. 5 30. 11. 35 | 29. 948
29. 922
29. 869
29. 813
29. 875
30. 008
30. 386
30. 015
30. 310 | 8. 13. 50
11. 16. 35
13. 6. 40
14. 14. 45
16. 10. 0
19. 16. 20
23. 15. 30
29. 13. 5 | 29.686
29.762
29.731
29.733
29.596
29.683
29.853
29.911 | | 24. 10. 30
27. 20. 0
29. 16. 0
February
1. 10. 25
6. 18. 10
15. 23. 45
24. 1. 40 | 30. 356
29. 975
29. 846
29. 595
29. 750
30. 093
29. 901 | 26. 4. 0 28. 15. 15 31. 5. 55 February 3. 16. 0 8. 16. 25 21. 17. 40 28. 5. 0 | 29. 764
29. 730
29. 508
28. 754
29. 224
29. 125
29. 243 | 5. 12. 50
10. 5. 0
16. 22. 45
22. 23. 40
26. 0. 15
27. 11. 20
27. 23. 20
30. 7. 35 | 29. 461
30. 244
29. 999
30. 000
29. 870
29. 994
29. 970
30. 085 | 5. 5. 0
5. 17. 50
15. 2. 10
20. 18. 0
25. 2. 40
26. 20. 50
27. 12. 45
28. 18. 15 | 29. 355
29. 366
29. 230
29. 745
29. 665
29. 786
29. 855
29. 806 | October 3. 11. 30 11. 22. 5 19. 9. 40 26. 11. 0 | 30.300
30.315
30.304
30.068 | October 2. 2. 50 8. 14. 45 15. 16. 0 23. 5. 45 31. 3. 10 | 30.092
29.814
29.957
29.628
29.489 | | March | | March | 27.245 | July | 30.009 | July | | November | | November | | | 3. 0. 5
9. 12. 0
12. 9. 45
15. 9. 45
17. 11. 0
20. 20. 0
21. 19. 50
25. 11. 45 | 29. 869
29. 966
29. 908
30. 019
29. 649
29. 410
29. 231
29. 851 | 6. 0. 0
11. 2. 30
13. 23. 20
16. 17. 10
19. 16. 40
21. 11. 50
23. 5. 35
29. 17. 0 | 29. 163
29. 047
28. 962
29. 050
29. 069
29. 100
28. 979
28. 823 | 6. 8. 25
10. 7. 50
14. 7. 0
17. 22. 15
24. 8. 50 | 29.743
29.489
30.116
29.834
29.987 | 5. 5. 35
9. 4. 0
10. 17. 30
16. 12. 30
19. 14. 10
29. 3. 20 | 29. 499
29. 299
29. 381
29. 692
29. 631
29. 702 | 1. 11. 5 6. 8. 0 10. 20. 20 14. 10. 5 16. 11. 30 21. 10. 15 23. 2. 40 24. 9. 15 | 29.904
30.215
29.899
29.786
29.892
30.019
29.971
30.100 | 2. 18. 10
10. 2. 50
12. 14. 10
15. 4. 10
19. 5. 40
22. 17. 0
23. 16. 40
29. 14. 10 | 29.378
29.482
29.317
29.502
29.415
29.852
29.808
29.232 | | April | | April | | August | | August | | | | | | | 3. 7. 45
5. 10. 0
7. 20. 20
10. 9. 0 | 29.477
30.025
29.884
30.524 | 4. 4. 0
6. 1. 33
8. 11. 20
14. 13. 5 | 29. 025
29. 620
29. 544
30. 083 | 1. 11. 10
8. 6. 0
12. 8. 20
17. 7. 5
20. 8. 55 | 30.032
29.946
30.078
30.034
29.975 | 5. 5. 25
9. 18. 0
15. 15. 10
19. 3. 40
21. 17. 20 | 29.469
29.801
29.935
29.863
29.785 | December | 29.359 | December | 29.039 | | 15. 10. 25
18. 0. 0
21. 12. 15
23. 3. 10
25. 0. 10
26. 12. 0
29. 7. 15 | 30. 205
30. 037
29. 806
29. 695
30. 124
30. 174
30. 065 | 17. 3. 0
20. 18. 10
22. 5. 25
23. 16. 0
25. 18. 45
28. 4. 10
30. 3. 55 | 29. 937
29. 549
29. 502
29. 296
29. 788
29. 783
29. 427 | 26. 9. 5 September 2. 22. 50 | 29. 983 | September 1. 15. 25 4. 17. 30 | 29.878
29.815 | 4. 18. 10
7. 17. 40
10. 21. 0
15. 10. 55
21. 3. 0
26. 10. 30
31. 16. 45 | 29.202
29.768
30.462
30.466
30.365
29.634
29.812 | 5. 12. 0
8. 5. 30
12. 14. 15
19. 17. 15
25. 21. 35
28. 5. 35 | 28. 738
29. 558
30. 251
30. 135
29. 277
29. 014 | The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period. The time is Universal Time. The height of the barometer cistern above mean sea level is 152 feet; no correction has been applied to the readings to reduce to sea level. TABLE XVIII(B). - HIGHEST AND LOWEST READINGS OF THE BAROMETER IN EACH MONTH FOR THE YEAR 1947 | | January | February | March | April | May | June | July | August | September | October | November | December | |----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | HIGHEST
LOWEST
RANGE | in.
30.356
29.115
1.241 | in.
30.093
28.754
1.339 | in.
30.019
28.823
1.196 | in.
30.524
29.025
1.499 | in.
30.144
29.461
0.683 | in.
30.244
29.230
1.014 | in.
30.116
29.299
0.817 | in.
30.169
29.469
0.700 | 1n.
30.386
29.596
0.790 | in.
30.315
29.489
0.826 | in.
30.215
29.232
0.983 | in.
30.466
28.738
1.728 | The highest reading in the year was 30.524 ins. on Apr. 10. The lowest reading in the year was 28.738 ins. on Dec. 5. The range of reading in the year was 1.786 ins. TABLE XIX. - MONTHLY RESULTS OF METEOROLOGICAL ELEMENTS FOR THE YEAR 1947 | | | | | T | EMPERATURE | OF THE AI | R | | | | | | |---------------|--|---------|--------|--------------------------|----------------------------------|---------------------------------|-----------------------------------|-----------------|---|--|--|---| | MONTH
1947 | Mean
Reading
of the
Barometer | Highest | Lowest | Range
in the
Month | Mean
of all
the
Highest | Mean
of all
the
Lowest | Mean
of the
Daily
Ranges | Monthly
Mean | Excess
of Mean
above the
Average
of 65
Years | Mean
Temperature
of
Evaporation | Mean
Temperature
of
Dew Point | Mean Degree of Humidity (Saturatio = 100) | | | in. | 0 | 0 | 0 | o | 0 | 0 | • | | 0 | 0 | | | January | 29.823 | 54.2 | 11.3 | 42.9 | 40.1 | 30.1 | 10.0 | 35.4 | - 3.2 | 34.0 | 31.7 | 85.5 | | February | 29.573 | 41.3 | 9.0 | 32.3 | 32.1 | 25.7 | 6.3 | 29.3 | -10.3 | 28.3 | 26.5 | 88.2 | | March | 29.429 | 58.0 | 21.6 | 36.4 | 46.6 | 34.8 | 11.8 | 40.3 | - 1.6 | 38.4 | 35.6 | 82.6 | | April | 29.862 | 71.9 | 30.3 | 41.6 | 57.9 | 40.8 | 17.1 | 49.2 | + 2.0 | 44.9 | 39.3 | 69.3 | | May | 29.811 | 87.8 | 40.0 | 47.8 | 67.4 | 47.7 | 19.6 | 57.4 | + 4.3 | 52.6 | 48.1 | 72.2 | | June | 29.797 | 93.0 | 44.5 | 48.5 | 72.1 | 52.8 | 19.3 | 62.4 | + 3.0 | 56.7 | 51.9 | 69.2 | | July | 29.794 | 90.2 | 48.3 | 41.9 | 74.9 | 57.1 | 17.7 | 65.2 | + 2.5 | 60.2 | 56.4 | 73.6 | | August | 29.942 | 89.7 | 46.8 | 42.9 | 78.8 | 57.5 | 21.2 | 67.3 | + 5.6 | 60.3 | 54.9 | 65.0 | | September | 29.900 | 83.7 | 40.1 | 43.6 | 71.5 | 51.5 | 20.0 | 61.2 | + 4.0 | 56.4 | 52.1 | 72.6 | | October | 29.996 | 71.8 | 29.3 | 42.5 | 60.7 | 43.3 | 17.4 | 51.9 | + 1.9 | 48.6 | 44.9 | 77.2 | | November | 29.751 | 61.9 | 25.0 | 36.9 | 50.7 | 39.8 | 10.9 | 45.9 | + 2.4 | 43.5 | 40.4 | 81.2 | | December | 29.807 | 55.8 | 21.0 | 34.8 | 45.6 | 37.4 | 8.2 | 42.2 | + 2.3 | 40.3 | 37.7 | 84.0 | | | | Highest | Lowest | Annual
Range | | | | | | | | | | Means | 29.790 | 93.0 | 9.0 | 84.0 | 58.2 | 43.2 | 15.0 | 50.6 | + 1.1 | 47.0 | 43.3 | 76.7 | | | | Mean | | R.A | AIN | | | | | | WIN | D | | | | | |---------------------|----------------------------------|---------------------------------|---------------------------------|-------------------------------|---|----------|-----------|-----------|------|---------|---------|---------------|------|--------------------------|---------------------------|---| | | Mean | Tempera-
ture
of the | Mean | | Amount collected | | | | Fro | m Osler | 's Anem | ometer | | | | From
Robin-
son's
Anemo- | | MONTH
1947 | Elastic
Force
of
Vapour | Earth
4 feet
below
the | Amount
of
Cloud
(0-10) | Number
of
Rainy
Days | in Gauge
No.6,
whose
receiving | ì | | of Hours | · - | | e of ea | ch Windzimuth | l | of Calm or
Calm Hours | Mean
Daily
Pressure | meter | | | | Surface
of the
Soil | | (0.005 in.
or over) | | N. | N.E. | E. | S.E. | S. | s.W. | W. | N.W. | Number of
Nearly Ca | on the
Square
Foot
 Mean Daily
Horizontal Move-
ment of the Air | | | in. | o | | | in. | h | h | h | h | h | h | h | h | h | lbs. | miles | | January | 0.178 | 43.6 | 6.8 | 16 | 1.632 | 11 | 125 | 97 | 83 | 70 | 160 | 68 | 4 | 126 | 0.36 | 267 | | February | 0.140 | 40.6 | 9.0 | - 11 | 1.569 | 45 | 272 | 189 | 42 | 19 | 2 | 1 | 21 | 81 | 0.25 | 267 | | March | 0.208 | 39.7 | 7.9 | 26 | 5.216 | 48 | 47 | 65 | 40 | 160 | 209 | 43 | 37 | 95 | 0.52 | 301 | | April | 0.241 | 44.7 | 5.9 | 13 | 1.513 | 45 | 28 | 69 | 18 | 70 | 271 | 99 | 18 | 102 | 0.90 | 340 | | May | 0.337 | 49.3 | 6.7 | 16 | 1.183 | 41 | 56 | 93 | 58 | 62 | 111 | 43 | 21 | 259 | 0.19 | 188 | | June | 0.389 | 54.3 | 6.1 | 13
14 | 2.927 | 26 | 18 | 59 | 39 | 106 | 149 | 99
112 | 34 | 189 | 0.26 | 218 | | July | 0.459 | 57.5
60.0 | 4.0 | 3 | 1.243
0.090 | 27
50 | 29
205 | 70
198 | 12 | 37
5 | 219 | 32 | 25 | 213
181 | 0.20
0.17 | 198
196 | | August
September | 0.455 | 59.8 | 5.6 | 10 | 1.533 | 53 | 69 | 27 | 7 | 53 | 212 | 47 | 53 | 199 | 0.17 | 211 | | October | 0.392 | 56.3 | 6.1 | 5 | 0.140 | 15 | 104 | 115 | 25 | 27 | 90 | 42 | 19 | 307 | 0.18 | 180 | | November | 0.252 | 52.4 | 7.0 | 14 | 1.100 | 56 | 8 | 24 | 3 | 32 | 257 | 148 | 91 | 101 | 0.49 | 293 | | December | 0.226 | 48.3 | 8.0 | 16 | 2.150 | 141 | 59 | 4 | 24 | 24 | 156 | 86 | 99 | 151 | 0.43 | 271 | | Sums | •• | •• | | 157 | 20. 296 | 558 | 1021 | 1010 | 357 | 665 | 1:878 | 820 | 447 | 2004 | | •• | | Means | 0.296 | 50.5 | 6.7 | •• | •• | | | | | | | | | | 0.35 | 244 | The greatest recorded pressure of the wind on the square foot in the year was 35.0 lbs. on March 16. The greatest recorded daily horizontal movement of the air in the year was 675 miles on April 23. The least recorded daily horizontal movement of the air in the year was 37 miles on November 6. TABLE XX. - MONTHLY MEAN READING OF THE BAROMETER AT EVERY HOUR OF THE DAY AS DEDUCED FROM THE PHOTOGRAPHIC RECORDS | | | T | | | , | | | | , | | · | | | |-----------------------------------|---------|----------|---------|---------|---|---------|--------|---------|-----------|---------|----------|----------|-----------------| | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | | | in. | o ^h | 29.820 | 29.583 | 29,440 | 29.855 | 29.820 | 29.802 | 29.801 | 29.952 | 29.903 | 30.011 | 29.768 | 29.810 | 29, 79 | | 1 | 29.817 | 29.580 | 29.435 | 29.852 | 29.813 | 29.798 | 29.798 | 29.947 | 29.898 | 30.007 | 29.759 | 29.805 | 29. 79 | | 2 | 29.822 | 29.576 | 29.429 | 29.851 | 29.808 | 29.793 | 29.791 | 29.944 | 29.898 | 30.001 | 29.755 | 29.804 | 29.78 | | 3 | 29.822 | 29,570 | 29,421 | 29, 852 | 29.805 | 29.789 | 29.786 | 29.941 | 29.893 | 29.995 | 29.750 | 29.800 | 29. 78 | | . 4 | 29.817 | 29.566 | 29.420 | 29.853 | 29.804 | 29.788 | 29.786 | 29,941 | 29.890 | 29.993 | 29.744 | 29.793 | 29.78 | | 5 | 29.814 | 29.563 | 29.422 | 29.855 | 29.807 | 29. 791 | 29.788 | 29.944 | 29.893 | 29.991 | 29.742 | 29.790 | 29.78 | | 6 | 29.816 | 29.563 | 29.423 | 29.864 | 29.812 | 29.793 | 29.792 | 29.947 | 29.899 | 29.994 | 29.743 | 29.790 | 29.78 | | 7 | 29.822 | 29.565 | 29.428 | 29.873 | 29.816 | 29.799 | 29.796 | 29.952 | 29.904 | 30.001 | 29.748 | 29.792 | 29.79 | | 8 | 29.832 | 29.571 | 29.435 | 29.877 | 29.819 | 29.800 | 29.800 | 29.956 | 29.911 | 30.006 | 29.755 | 29.799 | 29.79 | | 9 | 29.842 | 29.574 | 29.435 | 29.882 | 29.818 | 29.800 | 29.800 | 29.957 | 29.911 | 30.011 | 29.757 | 29.809 | 29.80 | | 10 | 29.846 | 29.577 | 29.438 | 29.883 | 29.818 | 29.799 | 29.800 | 29.955 | 29.912 | 30.009 | 29.760 | 29.817 | 29.80 | | 11 | 29.842 | 29.578 | 29.437 | 29.878 | 29.816 | 29.799 | 29.799 | 29.950 | 29.908 | 30.005 | 29.757 | 29.813 | 29.79 | | 12 | 29.831 | 29.574 | 29.434 | 29.871 | 29.812 | 29.800 | 29.796 | 29.944 | 29.900 | 29.996 | 29.750 | 29.804 | 29.79 | | 13 | 29.824 | 29.567 | 29.430 | 29.868 | 29.810 | 29.798 | 29.793 | 29.939 | 29.894 | 29.988 | 29.746 | 29.798 | 29.78 | | 14 | 29.817 | 29.562 | 29.424 | 29.859 | 29.805 | 29.794 | 29.790 | 29.933 | 29.889 | 29.982 | 29.740 | 29.797 | 29.78 | | 15 | 29.818 | 29.563 | 29.419 | 29.850 | 29.801 | 29.792 | 29.790 | 29.925 | 29.884 | 29.977 | 29.739 | 29.800 | 29.78 | | 16 | 29.819 | 29.564 | 29.419 | 29.849 | 29.800 | 29.790 | 29.786 | 29.921 | 29.882 | 29.977 | 29.741 | 29.806 | 29.77 | | 17 | 29.818 | 29.569 | 29.419 | 29.846 | 29.799 | 29.788 | 29.782 | 29.919 | 29, 883 | 29.982 | 29.745 | 29.810 | 29.78 | | 18 | 29.818 | 29.577 | 29.426 | 29.848 | 29.800 | 29.788 | 29.783 | 29.922 | 29.889 | 29.988 | 29.750 | 29.813 | 29.78 | | 19 | 29.819 | 29.581 | 29.432 | 29.851 | 29.807 | 29.794 | 29.788 | 29.928 | 29.900 | 29.991 | 29.754 | 29.817 | 29.78 | | 20 | 29.819 | 29.581 | 29.435 | 29.859 | 29.816 | 29.800 | 29.795 | 29.937 | 29.909 | 29.994 | 29.757 | 29.820 | 29.79 | | 21 | 29.819 | 29.582 | 29.436 | 29.865 | 29.821 | 29.809 | 29.800 | 29.944 | 29.913 | 29.998 | 29.760 | 29.823 | 29.79 | | 22 | 29.817 | 29.582 | 29.434 | 29.867 | 29.823 | 29.812 | 29.802 | 29. 949 | 29.914 | 29.998 | 29.759 | 29.825 | 29.79 | | 23 | 29.817 | 29.582 | 29.432 | 29.870 | 29.823 | 29.813 | 29.802 | 29.951 | 29.914 | 29.998 | 29.755 | 29.826 | 29.79 | | 24 | 29.815 | 29.582 | 29. 431 | 29.873 | 29.820 | 29.811 | 29.800 | 29.950 | 29.914 | 29.996 | 29.752 | 29.823 | 29.79 | | ∫ 0 ^h -23 ^h | 29.823 | 29.573 | 29.429 | 29.862 | 29.811 | 29.797 | 29.794 | 29.942 | 29.900 | 29.996 | 29.751 | 29.807 | 29.79 | | leans { 1 h-24 h | 29. 823 | 29.573 | 29.429 | 29.862 | 29.811 | 29.797 | 29.793 | 29.942 | 29.900 | 29.995 | 29.751 | 29.807 | 29.79 | | No. of Days
Employed | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | TABLE XXI. - MONTHLY MEAN TEMPERATURE OF THE AIR, AT EVERY HOUR OF THE DAY AS DEDUCED FROM THE AUTOGRAPHIC RECORDS | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | |---|---------|----------|-------|-------|------|------|------|--------|-----------|---------|----------|----------|-----------------| | | 0 | 0 | 0 | o | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | ۰ | | o ^h | 34.6 | 28.6 | 38.2 | 45.2 | 51.4 | 56.9 | 60.3 | 61,5 | 57.2 | 48.0 | 44.2 | 40.6 | 47.2 | | 1 | 34.4 | 28.4 | 38.1 | 44.5 | 50.7 | 56.1 | 59.6 | 60.7 | 56.6 | 47.3 | 43.9 | 40.6 | 46.7 | | 2 | 34.1 | 28.3 | 37.9 | 43.9 | 49.9 | 55.2 | 59.0 | 59.9 | 55.8 | 46.9 | 43.8 | 40.7 | 46.3 | | 3 | 33.7 | 27.9 | 37.8 | 43.4 | 49.3 | 54.7 | 58.4 | 59.0 | 55.3 | 46.4 | 43.6 | 40.8 | 45.9 | | 4 | 33.4 | 27.6 | 37.6 | 42.9 | 49.0 | 54.2 | 58.1 | 58.4 | 54.6 | 45.9 | 43.3 | 41.0 | 45.5 | | 5 | 33.1 | 27.6 | 37.2 | 42.4 | 49.1 | 54.8 | 58.5 | 58.4 | 54.0 | 46.1 | 43.5 | 41.1 | 45.5 | | 6 | 33.5 | 27.6 | 37.5 | 43.0 | 51.3 | 57.3 | 59.9 | 59.1 | 54.1 | 46.5 | 43.8 | 41.1 | 46.2 | | 7 | 33.6 | 27.7 | 37.8 | 45.1 | 54.0 | 59.9 | 61.9 | 61.3 | 55.8 | 47.2 | 44.1 | 41.2 | 47.5 | | 8 | 33.9 | 28.1 | 38.7 | 47.7 | 57.2 | 62.6 | 64.1 | 64.8 | 58.7 | 48.8 | 44.5 | 41.5 | 49.2 | | 9 | 34.4 | 29.1 | 40.3 | 50.5 | 59.8 | 65.5 | 66.6 | 68.3 | 62.5 | 51.3 | 45.7 | 41.9 | 51.3 | | 10 | 35.7 | 30.0 | 41.8 | 52.4 | 61.4 | 67.2 | 68.2 | 71.4 | 64.9 | 54.4 | 47.2 | 42.7 | 53.1 | | 11 | 36.9 | 30.6 | 42.8 | 53.8 | 63.0 | 67.8 | 69.6 | 73.8 | 67.1 | 56.4 | 48.3 | 43.5 | 54.5 | | 12 | 37.9 | 31.1 | 43.5 | 55.0 | 63.7 | 68.3 | 70.8 | 75.4 | 68.2 | 58.2 | 49.3 | 44.2 | 55.5 | | 13 | 38.3 | 31.3 | 44.1 | 55.8 | 64.4 | 69.1 | 71.8 | 76.8 | 69.2 | 59.4 | 49.8 | 44.6 | 56.2 | | 14 | 38.3 | 31.4 | 44.4 | 56.4 | 65.0 | 69.4 | 72.3 | 77.2 | 69.5 | 59.7 | 50.0 | 44.5 | 56.5 | | 15 | 37.9 | 31.1 | 44.3 | 56.0 | 65.6 | 69.2 | 72.1 | 77.3 | 69.2 | 59.3 | 49.4 | 44.2 | 56.3 | | 16 | 37.3 | 30.8 | 43.5 | 55.4 | 65.0 | 68.8 | 71.7 | 76.6 | 67.8 | 58.3 | 48.6 | 43.8 | 55.6 | | 17 | 36.6 | 30.4 | 42.7 | 54.7 | 63.9 | 68.2 | 70.8 | 74.8 | 66.5 | 56.6 | 47.6 | 43.3 | 54.7 | | 18 | 36.1 | 29.9 | 41.7 | 52.8 | 62.4 | 67.0 | 69.5 | 72.6 | 64.4 | 54.6 | 46.9 | 43.0 | 53.4 | | 19 | 35.6 | 29.5 | 40.6 | 50.7 | 59.9 | 65.2 | 67.7 | 69.5 | 62.5 | 53.0 | 46.2 | 42.5 | 51.9 | | 20 | 35.3 | 29.2 | 40.0 | 49.3 | 57.6 | 62.9 | 65.7 | 66.8 | 60.7 | 51.8 | 45.5 | 42.0 | 50.6 | | 21 | 35.3 | 28.9 | 39.6 | 48.0 | 55.6 | 60.7 | 63.9 | 64.8 | 59.2 | 50.8 | 44.8 | 41.7 | 49.4 | | 22 | 35.2 | 28.6 | 39.3 | 46.9 | 54.4 | 59.0 | 62.5 | 63.5 | 58.3 | 49.8 | 44.3 | 41.6 | 48.6 | | 23 | 34.9 | 28.6 | 38.9 | 46.0 | 53.1 | 57.8 | 61.3 | 62.3 | 57.5 | 48.8 | 43.9 | 41.3 | 47.9 | | 24 | 34.6 | 28.4 | 38.7 | 45.1 | 52.1 | 56.7 | 60.4 | 61.4 | 56.7 | 48.2 | 43.5 | 41.1 | 47.2 | | Means $\left\{ \frac{0^{h}-23^{h}}{}\right\}$ | 35.4 | 29.3 | 40.3 | 49.2 | 57.4 | 62.4 | 65.2 | 67.3 | 61.2 | 51.9 | 45.9 | 42.2 | 50.6 | | (1 ^h -24 ^h | 35.4 | 29.3 | 40.3 | 49. 2 | 57.4 | 62.4 | 65.2 | 67.3 | 61.2 | 51.9 | 45.9 | 42.2 | 50.6 | | No. of Days
Employed | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | TABLE XXII. - MONTHLY MEAN TEMPERATURE OF EVAPORATION AT EVERY HOUR OF THE DAY, AS DEDUCED FROM THE AUTOGRAPHIC RECORDS | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | |--|---------|----------|-------|-------|------|------|------|--------|-----------|---------|----------|----------|-----------------| | | 0 | 0 | o | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | | o ^h | 33.5 | 27.8 | 36.9 | 43.0 | 49.3 | 54.1 | 57.8 | 58.4 | 54.8 | 46.4 | 42.5 | 39.1 | 45.3 | | 1 | 33.5 | 27.7 | 36.9 | 42.4 | 48.7 | 53.6 | 57.3 | 57.9 | 54.4 | 46.0 | 42.4 | 39.2 | 45.0 | | 2 | 33.1 | 27.5 | 36.8 | 41.9 | 48.4 | 53.1 | 57.1 | 57.4 | 53.8 | 45.7 | 42.4 | 39.5 | 44.7 | | 3 | 32.9 | 27.4 | 36.8 | 41.5 | 48.0 | 52.8 | 56.9 | 56.9 | 53.5 |
45.2 | 42.2 | 39.7 | 44.5 | | 4 | 32.6 | 27.1 | 36.6 | 41.3 | 47.9 | 52.6 | 56.8 | 56.6 | 53.2 | 44.9 | 42.1 | 39.7 | 44.3 | | 5 | 32.4 | 26.9 | 36.4 | 41.1 | 47.8 | 52.8 | 57.0 | 56.3 | 52.8 | 44.6 | 42.1 | 39.7 | 44.2 | | 6 | 32.5 | 27.0 | 36.4 | 41.3 | 49.2 | 54.4 | 57.8 | 56.8 | 52.5 | 44.7 | 42.3 | 39.6 | 44.5 | | 7 | 32.5 | 27.1 | 36.5 | 42.5 | 50.9 | 55.7 | 58.8 | 58.1 | 53.7 | 45.3 | 42.4 | 39.7 | 45.3 | | 8 | 32.6 | 27.5 | 37.4 | 44.0 | 52.7 | 57.1 | 59.9 | 59.9 | 55.6 | 46.6 | 42.7 | 39.9 | 46.3 | | 9 | 33.2 | 28.2 | 38.7 | 45.5 | 54.2 | 58.4 | 61.0 | 61.5 | 57.6 | 48.7 | 43.5 | 40.2 | 47.6 | | 10 | 34.1 | 29.0 | 39.6 | 46.3 | 54.9 | 59.1 | 61.5 | 62.7 | 58.4 | 50.6 | 44.5 | 40.7 | 48.4 | | 11 | 35.1 | 29.4 | 40.1 | 47.0 | 55.5 | 59.4 | 62.0 | 63.1 | 59.4 | 51.4 | 44.9 | 41.1 | 49.0 | | 12 | 35.6 | 29.6 | 40.3 | 47.6 | 55.8 | 59.5 | 62.5 | 63.0 | 59.6 | 52.1 | 45.5 | 41.4 | 49.4 | | 13 | 36.0 | 29.7 | 40.6 | 48.0 | 56.1 | 59.5 | 62.9 | 63.3 | 60.0 | 52.6 | 45.6 | 41.8 | 49.7 | | 14 | 36.0 | 29.7 | 40.8 | 48.3 | 56.6 | 59.5 | 63.2 | 63.4 | 59.9 | 52.8 | 45.7 | 41.9 | 49.8 | | 15 | 35.7 | 29.6 | 40.7 | 48.3 | 56.8 | 59.6 | 63.2 | 63.5 | 59.6 | 52.6 | 45.4 | 41.7 | 49.7 | | 16 | 35.2 | 29.3 | 40.2 | 48. Q | 56.4 | 59.5 | 63.2 | 63.4 | 59.0 | 52.2 | 44.9 | 41.3 | 49.4 | | 17 | 34.7 | 29.0 | 39.8 | 47.6 | 56.0 | 59.3 | 62.8 | 62.7 | 58.6 | 51.5 | 44.4 | 41.0 | 48.9 | | 18 | 34.4 | 28.8 | 39.1 | 47.0 | 55.2 | 58.9 | 62.3 | 62.0 | 57.7 | 50.6 | 44.0 | 40.8 | 48.4 | | 19 | 34.0 | 28.5 | 38.6 | 46.1 | 54.0 | 58.2 | 61.6 | 61.2 | 56.9 | 49.7 | 43.6 | 40.4 | 47.7 | | 20 | 34.0 | 28.2 | 38.2 | 45.5 | 52.9 | 57.1 | 60.7 | 60.5 | 56.2 | 49.1 | 43.2 | 40.1 | 47.1 | | 21 | 34.0 | 28.0 | 37.9 | 44.8 | 52.1 | 56.2 | 59.8 | 59.9 | 55.6 | 48.5 | 42.8 | 39.9 | 46.6 | | 22 | 33.9 | 27.8 | 37.7 | 44.2 | 51.3 | 55.3 | 59.1 | 59.3 | 55.0 | 47.8 | 42.4 | 39.8 | 46.1 | | 23 | 33.7 | 27.7 | 37.5 | 43.6 | 50.6 | 54.6 | 58.5 | 58.7 | 54.7 | 47.0 | 42.1 | 39.6 | 45.7 | | 24 | 33.5 | 27.7 | 37.4 | 42.9 | 49.9 | 54.0 | 57.9 | 58.3 | 54.3 | 46.6 | 41.9 | 39.5 | 45.3 | | $M_{eans} \left\{ \frac{0^{h}-23^{h}}{1} \right\}$ | 34.0 | 28.3 | 38.4 | 44.9 | 52.6 | 56.7 | 60.2 | 60.3 | 56.4 | 48.6 | 43.5 | 40.3 | 47.0 | | neans lin-24h | 34.0 | 28.3 | 38.4 | 44.9 | 52.6 | 56.7 | 60.2 | 60.3 | 56.3 | 48.6 | 43.5 | 40.3 | 47.0 | | No. of Days
Employed | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | •• | TABLE XXIII. - MONTHLY MEAN TEMPERATURE OF THE DEW POINT AT EVERY HOUR OF THE DAY AS DEDUCED FROM THE CORRESPONDING AIR AND EVAPORATION TEMPERATURES | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | |---|---------|----------|-------|-------|------|------|------|--------|-----------|---------|----------|----------|-----------------| | | 0 | 0 | 0 | 0 | 0 | ٥ | ۰ | ۰ | ۰ | ٥ | ٥ | 0 | ٥ | | o ^h | 31.6 | 26.5 | 34.9 | 40.1 | 47.1 | 51.6 | 55.8 | 56.0 | 52.8 | 44.6 | 40.3 | 37.1 | 43.2 | | 1 1 | 32.0 | 26.6 | 35.0 | 39.6 | 46.5 | 51.4 | 55.5 | 55.7 | 52.6 | 44.5 | 40.5 | 37.3 | 43.1 | | 2 | 31.3 | 26.2 | 35.0 | 39.3 | 46.7 | 51.2 | 55.6 | 55.3 | 52.1 | 44.3 | 40.6 | 37.9 | 43.0 | | 3 | 31.5 | 26.6 | 35.1 | 38.9 | 46.6 | 51.0 | 55.7 | 55.2 | 51.9 | 43.7 | 40.4 | 38.3 | 42.9 | | 4 | 31.3 | 26.2 | 34.9 | 39.1 | 46.8 | 51.1 | 55.7 | 55.1 | 52.0 | 43.7 | 40.5 | 38.0 | 42.9 | | 5 | 31.2 | 25.7 | 35.1 | 39.3 | 46.4 | 50.9 | 55.8 | 54.6 | 51.7 | 42.7 | 40.3 | 37.8 | 42.6 | | 6 | 30.8 | 25.9 | 34.6 | 38.9 | 47.0 | 51.9 | 56.2 | 55.0 | 51.0 | 42.5 | 40.4 | 37.6 | 42.6 | | 7 | 30.7 | 26.1 | 34.5 | 39.0 | 47.8 | 52.1 | 56.4 | 55.6 | 51.9 | 43.1 | 40.2 | 37.7 | 42.9 | | 8 | 30.4 | 26.6 | 35.5 | 39.3 | 48.5 | 52.5 | 56.8 | 56.3 | 53.0 | 44.2 | 40.4 | 37.7 | 43.4 | | 9 | 31.1 | 26.7 | 36.5 | 39.3 | 49.1 | 52.6 | 56.9 | 56.6 | 53.6 | 45.9 | 40.7 | 37.8 | 43.9 | | 10 | 31.3 | 27.2 | 36.4 | 38.7 | 48.9 | 52.6 | 56.7 | 56.5 | 53.2 | 46.8 | 41.3 | 37.8 | 43.9 | | 11 | 32.1 | 27.4 | 36.1 | 38.7 | 48.7 | 52.7 | 56.5 | 55.3 | 53.3 | 46.3 | 40.6 | 37.7 | 43.8 | | 12 | 31.7 | 27.3 | 35.7 | 38.7 | 48.7 | 52.5 | 56.5 | 53.9 | 52.8 | 46.1 | 40.9 | 37.6 | 43.5 | | 13 | 32.1 | 27.1 | 35.5 | 38.5 | 48.7 | 51.7 | 56.6 | 53.3 | 52.7 | 45.8 | 40.5 | 37.9 | 43.4 | | 14 | 32.1 | 26.9 | 35.5 | 38.5 | 49.1 | 51.4 | 56.9 | 53.1 | 52.3 | 45.9 | 40.5 | 38.4 | 43.4 | | 15 | 32.0 | 27.3 | 35.4 | 39.1 | 49.1 | 51.8 | 57.0 | 53.3 | 51.8 | 45.9 | 40.5 | 38.3 | 43.5 | | 16 | 31.6 | 26.9 | 35.4 | 39.2 | 48.7 | 52.0 | 57.2 | 53.7 | 51.9 | 46.2 | 40.3 | 37.9 | 43.4 | | 17 | 31.4 | 26.7 | 35.5 | 39.1 | 49.0 | 52.2 | 57.1 | 53.7 | 52.2 | 46.3 | 40.4 | 37.7 | 43.4 | | 18 | 31.5 | 26.8 | 35.1 | 40.0 | 48.6 | 52.4 | 57.2 | 54.0 | 52.2 | 46.6 | 40.5 | 37.6 | 43.5 | | 19 | 31.2 | 26.7 | 35.7 | 40.6 | 48.6 | 52.4 | 57.2 | 55.0 | 52.2 | 46.2 | 40.3 | 37.4 | 43.6 | | 20 | 31.7 | 26.5 | 35.6 | 40.9 | 48.5 | 52.2 | 57.1 | 55.8 | 52.4 | 46.2 | 40.2 | 37.4 | 43.7 | | 21 | 31.7 | 26.5 | 35.4 | 40.8 | 48.7 | 52.4 | 56.8 | 56.3 | 52.6 | 46.0 | 40.1 | 37.4 | 43.7 | | 22 | 31.6 | 26.5 | 35.4 | 40.9 | 48.3 | 52.2 | 56.5 | 56.2 | 52.1 | 45.6 | 39.9 | 37.3 | 43.5 | | 23 | 31.6 | 26.2 | 35.5 | 40.6 | 48.1 | 51.7 | 56.3 | 55.9 | 52.3 | 45.0 | 39.8 | 37.2 | 43.4 | | 24 | 31.6 | 26.6 | 35.5 | 40.0 | 47.7 | 51.6 | 55.9 | 55.9 | 52.3 | 44.8 | 39.8 | 37.3 | 43.3 | | $Means \left\{ \frac{0^{h}-23^{h}}{h} \right\}$ | 31.5 | 26.6 | 35.4 | 39.5 | 48.1 | 51.9 | 56.5 | 55.1 | 52.4 | 45.2 | 40.4 | 37.7 | 43.4 | | 1 h-24 h | 31.5 | 26.6 | 35.4 | 39.5 | 48.1 | 51.9 | 56.5 | 55.1 | 52.3 | 45.2 | 40.4 | 37.7 | 43.4 | TABLE XXIV. - MONTHLY MEAN DEGREE OF HUMIDITY (SATURATION = 100) AT EVERY HOUR OF THE DAY, AS DEDUCED FROM THE CORRESPONDING AIR AND EVAPORATION TEMPERATURES | | | · | , | | | | | | | | 7 | | , | |-----------------------------------|---------|----------|-------|-------|-----|------|------|--------|-----------|---------|----------|----------|-----------------| | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | | o ^h | 89 | 90 | 88 | 83 | 85 | 83 | 85 | 82 | 85 | 88 | 86 | 87 | 86 | | 1 | 91 | 91 | 89 | 83 | 86 | 85 | 86 | 83 | 86 | 90 | 87 | 87 | 87 | | 2 | 90 | 90 | 90 | 84 | 89 | 86 | 89 | 85 | 87 | 91 | 88 | 89 | 88 | | 3 | 92 | 94 | 91 | 84 | 90 | 88 | 91 | 87 | 88 | 91 | 88 | 90 | 89 | | 4 | 92 | 94 | 91 | 86 | 92 | 89 | 92 | 89 | 91 | 92 | 90 | 89 | 91 | | 5 | 93 | 91 | 92 | 89 | 90 | 87 | 91 | 87 | 92 | 88 | 88 | 88 | 90 | | 6 | 90 | 93 | 90 | 85 | 85 | 82 | 87 | 86 | 89 | 86 | 87 | 87 | 87 | | 7 | 88 | 93 | 88 | 80 | 79 | 75 | 82 | 82 | 86 | 85 | 86 | 87 | 84 | | 8 | 86 | 93 | 88 | 72 | 72 | 70 | 77 | 74 | 81 | 83 | 85 | 86 | 81 | | 9 | 87 | 90 | 86 | 65 | 68 | 63 | 71 | 66 | 73 | 82 | 83 | 85 | 77 | | 10 | 84 | 88 | 81 | 60 | 64 | 59 | 67 | 59 | 66 | 75 | 79 | 83 | 72 | | . 11 | 82 | 86 | 77 | 56 | 59 | 59 | 63 | 52 | 61 | 69 | 74 | 80 | 68 | | 12 | 78 | 83 | 74 | 54 | 58 | 57 | 61 | 47 | 58 | 64 | 73 | 77 | 65 | | 13 | 78 | 82 | 72 | 52 | 57 | 54 | 58 | 44 | 56 | 61 | 70 | 77 | 63 | | 14 | 78 | 81 | 71 | 51 | 57 | 53 | 58 | 43 | 55 | 60 | 69 | 79 | 63 | | 15 | 79 | 83 | 71 | 53 | 55 | 54 | 59 | 43 | 54 | 61 | 71 | 80 | 64 | | 16 | 80 | 83 | 73 | 54 | 55 | 55 | 60 | 45 | 57 | 64 | 73 | 80 | 65 | | 17 | 81 | 84 | 75 | 55 | 58 | 57 | 62 | 48 | 60 | 69 | 76 | 81 | 67 | | 18 | 83 | 87 | 78 | 62 | 60 | 59 | 65 | 52 | 65 | 74 | 78 | 81 | 70 | | 19 | 84 | 88 | 82 | 68 | 66 | 64 | 69 | 60 | 69 | 78 | 80 | 82 | - 74 | | 20 | 87 | 88 | 84 | 73 | 71 | 68 | 74 | 68 | 74 | 81 | 82 | 83 | 78 | | 21 | 87 | 89 | 85 | 76 | 77 | 74 | 77 | 74 | 79 | 84 | 84 | 84 | 81 | | 22 | 87 | 90 | 86 | 79 | 80 | 78 | 81 | 77 | 80 | 86 | 85 | 84 | 83 | | 23 | 87 | 89 | 87 | 81 | 83 | 80 | 84 | 80 | 83 | 86 | 85 | 85 | 84 | | 24 | 89 | 92 | 88 | 83 | 85 | 83 | 85 | 82 | 85 | 88 | 87 | 86 | 86 | | ∫ 0 ^h -23 ^h | 86 | 88 | 83 | 70 | 72 | 70 | 75 | 67 | 74 | 79 | 81 | 84 | 77 | | Means { 1 h-24 h | 86 | 88 | 83 | 70 | 72 | 70 | 75 | 67 | 74 | 79 | 81 | 84 | 77 | TABLE XXV. - TOTAL AMOUNT OF SUNSHINE REGISTERED IN EACH HOUR OF THE DAY IN EACH MONTH, AS DERIVED FROM THE RECORDS OF THE CAMPBELL-STOKES SELF-REGISTERING INSTRUMENT FOR THE YEAR 1947 | | | | | Ro | egiste: | red du | ration | of Su | nshine | in th | e Hour | ending | g : – | | | | Total
Registered | Corre-
sponding
aggregate | Pro- | titude of
n at Noon | |-----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------------------|---|--------------------------------|---------------------------| | MONTH
1947 | 5 ^h | 6 ^h | 7 ^h | 8 ^h | 9 ^h | 10 ^h | 11 ^h | Noon | 13 ^h | 14 ^h | 15 ^h | 16 ^h | 17 ^h | 18 ^h | 19 ^h | 20 ^h | Duration of Sunshine in each Month | Period during which the Sun was above the Horizon | portion
of
Sun-
shine | Mean Altitu
the Sun at | | | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | | 0 | | January | _ | _ | - | 0.1 | 2.1 | 8.4 | 8.4 | 8.4 | 7.3 | 6.2 | 3.1 | 0.2 | _ | - | - | _ | 44.2 | 260.3 | 0.170 | 18 | | February | - | - | - | 0.2 | 1.0 | 1.4 | 2.1 | 2.8 | 3.4 | 3.0 | 1.9 | 0.7 | - | - | - | - | 16.5 | 278.2 | 0.059 | 26 | | March | _ | - | 0.5 | 3.2 | 4.7 | 5.9 | 5.3 | 7.1 | 6.9 | 7.7 | 6.0 | 4.0 | 1.4 | 0.1 | - | - | 52.8 | 367.0 | 0.144 | 36 | | Apr11 | 0.2 | 2.4 | 9.6 | 14.3 | 14.7 | 15.5 | 14.4 | 15.7 | 15.8 | 15.7 | 13.5 | 12.2 | 13.4 | 8.3 | 0.4 | - | 166.1 | 414.7 | 0.401 | 48 | | May | 1.0 | 7.7 | 13.7 | 15.9 | 17.2 | 15.2 | 14.7 | 13.4 | 13.6 | 14.3 | 15.6 | 14.6 | 13.0 | 13.1 | 6.9 | 0.5 | 190.4 | 483.1 | 0.394 | 57
 | June | 3.1 | 14.1 | 14.9 | 15.4 | 17.1 | 17.2 | 15.0 | 13.9 | 15.5 | 15.2 | 13.2 | 14.1 | 13.3 | 12.0 | 12.8 | 2.4 | 209.2 | 496.1 | 0.422 | 62 | | July | 0.2 | 5.4 | 9.2 | 9.9 | 14.0 | 12.8 | 12.1 | 12.4 | 13.3 | 13.7 | 11.4 | 12.1 | 12.1 | 11.9 | 7.9 | 1.3 | 159.7 | 500.3 | 0.319 | 60 | | August | - | 1.2 | 8.6 | 14.5 | 18.7 | | 23.5 | 23.0 | 24.3 | 22.8 | 23.4 | 23.4 | 20.8 | 19.1 | 5.2 | - | 250.6 | 453.0 | 0.553 | 52 | | September | - | - | 3.3 | 10.2 | 15.1 | | | 15.3 | 16.8 | 17.2 | 15.2 | 13.5 | 10.5 | 3.4 | - | i - | 151.9 | 381.0 | 0.399 | 42 | | October | - | - | - | 0.8 | 5.9 | 11.0 | 13.1 | 14.4 | 13.9 | 13.3 | 12.2 | 8.7 | 3.5 | - | - | - | 96.8 | 332.6 | 0.291 | 30 | | November | - | - | - | 0.3 | 1.5 | 4.9 | 6.9 | 7.0 | 9.7 | 8.4 | 6.3 | 1.2 | 0.1 | - | - | - | 46.3 | 268.0 | 0.173 | 20 | | December | - | - | _ | - | 0.3 | 1.7 | 2.4 | 2.8 | 3.9 | 3.8 | 1.2 | _ | _ | _ | _ | - | 16.1 | 245.7 | 0.066 | 16 | | For the
Year | 4.5 | 30.8 | 59.8 | 84.8 | 112.3 | 131.4 | 134.0 | 136.2 | 144.4 | 141.3 | 123.0 | 104.7 | 88.1 | 67.9 | 33.2 | 4.2 | 1400.6 | 4480.0 | 0.313 | | The hours are reckoned from "Apparent" midnight. TABLE XXVI. - READINGS OF THE THERMOMETERS IN THE STEVENSON SCREEN IN THE CHRISTIE ENCLOSURE (The readings of the maximum and minimum thermometers apply to the 24 hours ending 21¹) Dry-Bulb Thermometers, Dry-bulb Thermometers, Wet-Bulb Thermometers, Wet-Bulb Thermometers. 4 ft. above the Ground 4 ft. above the Ground 4 ft. above the Ground 4 ft. above the Ground Day Day of the of the Maxi-Mini-9^h 12^{h} $\epsilon 1^{\rm h}$ 9^h $\epsilon 1^{\text{h}}$ 9ħ 12^h 15^h $\epsilon 1^{h}$ Month. 15^h 12h 21^h Month Max1-Mini 12^h ₉h 15^h 15^h mam mum mum mum MARCH JANUARY 32.°6 36°9 35°7 31.6 30°3 40.°3 32.°2 33.°6 38.°9 37.6 39.°0 36.°5 38.4 23.7 28°7 34.4 34.°5 26°5 32.0 30°3 1 1 30.5 2 44.8 30.5 37.5 41.0 41.8 31.0 36.5 38.7 38.2 2 39.0 23.9 29.8 37.2 38.4 30.0 28.8 32.3 32.7 28.9 28.8 37.0 40.7 36.0 38.0 21.7 29.4 36.9 36.6 30.7 28.0 32.2 32.5 29.7 3 44.0 35.2 43.2 38.8 33.2 37.3 29.7 37.4 32.4 35.0 37.0 36.4 32.4 33.9 35.1 31, 2 34.7 29.8 33.1 33.8 32.7 30.7 31.1 30.5 30.4 36.3 29.8 31.6 34.2 36.2 33.4 32.0 34.7 31.8 32.5 30.7 32.0 32.2 32.3 32.1 31.6 31.5 31.5 31.6 6 24.7 27.4 26.9 27.2 27.3 25.3 25.8 25.6 26.0 33.0 29.0 30.3 31.8 32.3 30.0 29.5 30.8 31.1 29.2 33.4 32.3 21.6 25.3 33.2 33.2 23.5 24.7 30.0 31.6 22.5 34.6 27. 3 32.3 33.1 33.2 34.6 31.7 32.5 34.5 35.4 43.0 40.2 22.8 33.3 35.3 39.5 37.0 32.1 34.0 36.0 8 36.0 35.4 37.9 42.5 8 34.7 43.0 33.8 38.4 34.4 34.6 31.0 43.9 36.0 40.8 41.0 47.5 38.3 46.0 38.3 38.5 40.0 45.8 37.7 39.6 44.3 43.7 37.7 38.4 36.4 34.5 10 29.5 32.0 42.9 31.5 41.2 41.5 42.7 10 44.4 32.8 36.2 41.6 41.6 44.4 35.8 40.1 41.1 44.3 44.5 42.3 43.3 32.6 33.7 11 50.0 40.3 40.8 45.0 47.3 44.8 40.3 43.4 45.8 41.8 11 44.6 34.3 34.4 32.6 33.0 33.1 32.9 31.5 12 48.0 39.4 42.1 44.6 46. 5 48.0 39.4 41.6 43.8 46.9 12 33.5 30.6 32.4 32.8 32.7 32.4 30.7 31.3 31.4 31.6 13 48.7 42.3 43.0 46.3 44.2 40.8 39.9 40.5 39.9 37.5 13 52. 2 32.4 47.6 51.0 48.6 47.4 46.7 49.1 47.7 46. 9 14 53.0 37.0 46.0 50.3 53.0 52.4 44.8 49.1 51.4 49.0 14 47.4 31.3 34.6 34.3 34.6 31.3 33.3 32.7 32.4 29.7 15 45.8 50.8 51.9 50.2 46.0 47.6 47.9 47.0 44.2 15 35.3 25.1 31.1 34.9 34.7 32.4 30.4 31.9 31.6 31.9 52.4 48.0 57.0 50.0 47.0 52.6 16 54.2 43.9 45.5 53.0 50.4 43.4 46.5 47.2 16 32.4 55.6 46.3 44.5 46.4 48.8 40.3 39.2 39.2 44.9 17 51.9 41.2 44.4 47.0 48.2 41.2 42.3 43.3 43.1 17 55.7 54.8 53.6 45.0 43.4 49.4 48.9 43.6 18 47.6 35.3 38.1 46.8 40.9 36.9 42.4 42.8 39.4 18 56.0 42.9 50.7 51.5 53.5 47.0 47.2 47.3 47.8 44.7 45.5 19 41.1 35.2 37.1 37.2 37.9 37.3 36.9 19 48.6 44.9 46.6 47.9 48.6 46.0 45.6 46.7 46.4 43.4 38.1 37.6 36.6 37.3 52.1 42.9 49.4 51.0 42.1 45.2 20 39.1 36.6 35.2 34.8 20 45.1 47.0 39.7 33.3 39.3 34.4 44.3 45.5 34.7 29.0 21 45.2 50.6 29.8 32.3 28.8 53.7 53.0 46.0 49.7 50.9 47.9 44.0 21 38.0 27.6 30.0 36.7 36.4 34.3 53.6 32.0 32.2 29.4 54.9 42.7 49.9 47.3 22 37.3 26.7 32.7 36.0 36.4 31.4 31.2 22 54.6 46.8 47.3 46.1 49.2 44.2 23 33.6 28.0 30.9 33.3 32.6 28.0 29.5 30.7 30.3 26.6 23 54.3 43.8 49.0 54.0 50.5 43.8 46.2 47.1 45.0 41.6 24 31.9 26.2 27.5 30.2 31. 2 28.0 26.8 28. 7 28.8 27.0 24 45.7 36.3 44.5 41.6 38.6 37.8 43.4 39, 1 36.3 34.8 41.3 31.3 22.4 26, 4 29.3 31.0 31.3 26.1 28.3 29. 5 30.5 25 52.6 32.4 42.3 48.4 52.0 40.4 38.7 44.3 38.2 25 26 25.7 29.3 27.6 26.0 27.2 28.4 26.9 25.6 26.7 26 52.8 38.6 42.7 48.4 50.0 42.7 39.4 41.1 41.8 40.0 32.0 29.5 26.4 29.3 27.9 27.8 26.8 28.8 26.6 25.5 27 53.9 41.8 47.4 50.3 52.4 48.8 46.4 48.5 49.9 47.4 27 25.4 19.0 19.0 18.0 47.9 50.8 49.6 49.3 28 28.8 27.4 28.6 26.8 26.7 27.5 26.0 28 58.0 45.7 57.7 52.0 47.3 53.7 19.0 29 25.8 11.3 19.6 24.0 20.0 18.5 22.3 23.8 29 54.9 46.3 50.9 54.4 52.0 47.0 49.9 52.7 51.3 46.2 30 29.7 15.2 23.2 28.6 29.7 25.4 21.9 26.7 28.2 24.9 30 52.4 43.8 49.1 51.6 51.5 43.8 46.8 47.9 47.5 42.6 35.0 32.0 29.1 32.0 31.0 31 41.5 31 24.8 29.6 34.0 32.8 31.2 46.4 45.3 44.8 46.1 43.6 43.8 43.5 43.7 42.4 34.0 40.3 39.6 38.7 40.3 40.7 37.9 40.1 30.8 37.9 37.9 33.2 35.6 35.7 Means 34.8 43.5 Means 34.4 35.3 46.5 44.3 FEBRUARY APRIL 30°4 25°3 30.°5 33.3 30°.1 28°9 56°2 39°2 44.8 46.5 47.2 46.9 32.6 31.4 29.8 28. 5 49.8 55.0 53.6 42.4 1 1 34.2 28.8 33.7 33.8 33.6 33.7 32.2 33.2 33.1 33.0 2 44.8 38.8 40.9 42.5 42.6 38.8 40.5 41.5 42.1 38.3 2 47.9 36.7 33.4 34.9 35.0 35.3 36.2 34.6 34.4 34.8 35.5 3 36.2 39.7 46.5 47.4 43.6 39.2 44.3 45.0 42.5 29.8 38.0 39.2 39.7 40.0 38.5 38.4 38.3 37.3 29.8 38.0 37.1 29.2 44.9 40.2 40.5 39.5 38.4 38.0 37.8 31.8 28.2 30.2 31.6 31.4 29.0 29.2 29.6 29.7 28.3 50.9 35.8 46.2 50.3 49.0 46.6 40.6 44.8 44.4 45.4 28.6 27.6 29.2 29.0 29.0 28.5 28.5 28.3 53.6 51.2 47.9 47.4 29.2 28.1 46.6 53.1 47.4 46.2 45.4 44.4 29.1 28.3 59.6 49.8 46.9 29.8 27.4 29.1 29.2 29.8 28. 1 27.5 28, 2 44.7 52.0 56.4 58.8 46.5 48.0 46.3 29.5 28.2 29.6 29.2 8 52.2 50.4 44.7 42.5 41.5 R 30.8 30.6 29. 8 29.0 28.4 29.5 44.7 49.3 48.6 47.4 44.0 37.0 9 34.8 28.2 30.0 33.6 34.8 34.8 29.6 32.3 34.1 34.6 9 48.8 36.4 43.8 44.9 48.8 40.8 37.8 38.3 41.0 10 35.7 33.1 35.1 34.3 33.5 33.5 34.9 34.1 33.0 33.0 10 59.2 30.3 48.2 57.0 58.6 44.0 41.0 46.5 48.0 41.0 33.8 11 25.3 29.2 28.8 27.9 25.3 28. 5 28.0 27.2 24.6 11 61.4 33.2 50.6 58.3 60.0 45.7 43.0 46.9 47.5 42.3 12 26.9 24.5 26.5 26.9 25.6 25.2 26.0 26.0 24.4 12 61.4 37.6 50.0 58.2 60.5 47.8 45.0 48.1 50.0 42.5 24.7 27.1 28.2 29.2 27.7 63.7 37.7 49.0 63.0 49.6 50.1 52.0 13 29.4 25.2 28.3 26.6 27.4 28.2 13 60.4 44.2 45.6 30.3 29.7 42.2 54.9 14 32.1 27.7 31.8 30.4 28.4 29.4 30.8 30.4 14 66.7 63.3 66.1 55.5 47.2 49.5 55.0 50.5 15 31.8 28.0 31.3 31.3 30,0 28.0 30.3 30.3 29.0 27.0 15 62.6 52.0 53.5 59.2 59.0 52.0 50.3 53, 2 53.5 49.6 16 28.7 25.7 27.8 28.4 28.5 25.9 27.3 27.4 27.5 25.2 16 71.9 42.5 61.4 68.3 70.8 50.6 55.4 55.4 57.8 56.8 25.8 26.6 27.2 26.6 17 64.0 44.5 56.0 62.5 17 27.2 26.0 25.5 25.9 25.6 25.2 59.6 44.5 50.0 52.6 52.3 42.8 27.5 29.3 27.5 62.0 41.9 52.6 27.4 60.2 18 25.1 27.0 26.4 18 56.6 48.8 47.9 53.0 50.5 47.4 29.3 26.9 25.6 29.6 29.6 57.8 51.5 27.6 28.6 43.4 54.7 55.0 49.8 19 29.7 26.8 26.9 27.2 28.1 28.1 19 47.4 48.5 49.5 45.4 20 30.0 30.8 27.8 41.2 57.0 30.9 26.8 28, 2 27.7 28.9 29. 2 26.9 20 57.6 53.6 55.6 50.6 50.9 50.0 50.6 48.3 29.4 27.6 21 29.4 24.6 28.4 24.6 27.7 28.4 27.3 24.3 21 56.9 45. 9 54.2 54.3 56.4 52.0 48.3 49.5 49.8 47.0 22 28.8 24.2 27.0 28.2 28. 2 25.8 26.3 27.0 26.5 25.3 22 59.3 45.3 49.1 53.4 55.9 47.2 45.6 50.2 47.7 44.5 23 31.1 22.2 26.0 30.9 30.4 22.2 25.4 28.4 28.8 21.7 52.4 42.4 51.9 46.0 49.5 49.2 47.4 47.9 44.2 23 44.0 17.0 24.2 25.2 20.8 49.8 24 25.5 9.0 16.7 23.7 24.2 20.2 59.0 45.7 52.6 56.8 57.5 45.3 47.5 46.5 25 10.0 33.6 35.0 29.8 36.0 15.4 14.9 30.1 31.3 28.6 25 67.6 42.1 57.6 63.9 67.5 58.4 50.1 53.4 56.4 53.4 40.4 39.7 33.0 26 41.3 29.1 34.6 31.5 34.4 31.0 26 46.7 52.5 58.6 62.8 50.1 45.5 48.4 50.8 34.4 63.3 44.6 27 37.3 30.4 32.6 35.0 36.7 33.4 29.7 31.5 27 35.5 54.9 60.7 61.7 52.0 49.7 48.6 32.3 31.6 61.9 44.7 47.8 32.8 32.6 33.3 31.0 28 31.0 31.3 33.4 30.5 48.6 56.9 57.4 50.8 30.3 28.5 28 59.8 48.4 46.0 46.4 45.5 44.5 29 63.5 41.4 51.6 59.9 62.6 50.6 44.5 48.3 51.6 49.0 30 51.4 41.7 42.2 46.5 46.9 42.4 40.6 43.5 44.0 40.7 29, 1 26.1 Means 32.1 31.1 31.1 28.9 28.2 29.6 29.6 28.0 Means 58.1 41.4 50.5 55.0 56.0 48.0 45.5 47.6 48.3 44.8 | | | TABLE XXVI READINGS OF THE THERMOMETERS (The readings of the maximum and minim | | | | | OF THE | THERM | OMETER | RS IN | THE STE | VENSO | N SCRE | EN IN | THE C | iristi | E ENCL | OSURE | | | | |-----------------|----------------|---|----------------|-------------------|-----------------|----------------------|--------------|----------------------|----------------------|----------------------|-----------------|----------------------|----------------------|----------------------|-----------------|-----------------|-------------------|----------------|-----------------|--|-----------------| | | | | | (The 1 | reading | s of t | he max | imum ar | nd mini | mum th | ermomet | ers app | oly to | the 24 | hours | ending | 21 ^h) | | | ······································ | | | Day | | | | ermomet
the Gr | | | | Bulb Th | | | Day | | | Bulb The
above | | | | | | ermomete
the Gr | | | of the
Month | Maxi-
mum | Mini-
mum | 9 ^h | 12 ^h | 15 ^h | 21 ^h | 9h | 12 ^h | 15 ^h | 21 ^h | of the
Month | Maxi-
mum | Mini-
mum | 9 ^h | 12 ^h | 15 ^h | 21 ^h | 9 ^h | 12 ^h | 15 ^h | 21 ^h | | | | | | | MAY | | | | | | | | | | | JULY | | | | | | | 1 2 | 50.8
46.6 | 40.9
40.0 | 43.5
41.6 | 45. 2
43. 7 | 47.7
44.6 | 42.2
43.4 | 41.7
39.9 | 42.3
41.5 | 44.7
42.4 | 40.2
42.7 | 1
2 | 67.1
73.8 | 55.2
56.8 | 63.5
64.3 | 65.5
69.0 | 66.3
71.6 | 62.2
64.0 | 59.4
60.1 | 59.7
61.9 | 59.3
63.0 | 59.2
58.0 | | 3 4 | 66.0 | 43.4 | 58.0 | 63.3 | 64.4
55.2 | 54.6
46.1 | 52.5
49.3 | 52.7
47.7 |
52.3
51.5 | 50.1
44.4 | 3
4 | 72.7
76.4 | 56.4
55.8 | 66.0
64.5 | 69.5
73.0 | 71.5
72.2 | 65.6
61.6 | 61.0
59.5 | 62.6
61.3 | 63.3
62.2 | 61.0
57.6 | | 5 | 63.6
65.3 | 40.3
45.0 | 58. 2
52. 9 | 60.5
55.9 | 60.9
61.9 | 53.2
55.0 | 51.7
51.2 | 51.7
52.1 | 51.4
56.4 | 48. 4
52. 3 | 5
6 | 64.6
65.9 | 56.0
48.3 | 60.6
58.0 | 60.0 | 63.4
63.7 | 56.0
58.4 | 50.1
51.3 | 51.3
52.9 | 52.9
55.5 | 51.0
54.7 | | 7 8 | 73.0
70.8 | 48.3
52.2 | 68.0
66.6 | 72.5
68.6 | 69.0
67.0 | 55.0
57.6 | 58.4
59.4 | 58.6
60.9 | 57.4
57.7 | 51.6
52.8 | 7
8 | 69.8
64.7 | 54.6
50.4 | 57.1
61.4 | 66.7
64.2 | 66.6
62.0 | 55.5
55.3 | 55.0
54.1 | 55. 2
55. 4 | 54. 4
56. 0 | 51.5
51.8 | | 9
10 | 75.3
62.9 | 50.8
51.4 | 64.4
60.0 | 71.8
59.2 | 73.2
59.2 | 62.9
51.4 | 57.4
55.6 | 61.5
55.4 | 62.7
54.7 | 57.7
49.7 | 9
10 | 68.0
62.0 | 51.1
52.2 | 59.5
54.6 | 63.6
55.9 | 59.7
59.8 | 56.0
58.3 | 53. 9
52. 4 | 56.3
54.8 | 56.5
58.4 | 52.0
55.0 | | 11
12 | 68.9
66.0 | 43.8
52.9 | 60.3
57.6 | 65.0
64.5 | 65.8
65.4 | 58.0
55.6 | 53.2
52.7 | 54.2
59.0 | 55. 2
59. 4 | 52.0
53.6 | 11
12 | 66.1
71.3 | 51.9
48.8 | 58.4
63.2 | 60.0
67.4 | 62.5
69.0 | 58.6
59.7 | 54.0
56.5 | 53.1
57.7 | 54.5
59.0 | 53.2
55.3 | | 13
14 | 80.3
81.1 | 51.8
53.0 | 68.0
75.3 | 72.4
79.5 | 80.3
76.6 | 66.6
53.0 | 63.4
62.7 | 66.4
64.9 | 68.7
63.9 | 60.0
47.2 | 13
14 | 77.6
81.0 | 56. 2
60. 8 | 63.3 | 71.4
75.8 | 76.2
76.8 | 69.0
66.0 | 60.9
66.3 | 65.4
68.5 | 68.3
67.8 | 65.3 | | 15
16 | 63.7
61.5 | 46.4
45.9 | 55.6
55.8 | 57.0
55.3 | 63.7
61.5 | 50.8
50.7 | 49.9
50.7 | 49.4
50.7 | 52. 1
53. 7 | 48.7
49.2 | 15
16 | 77.7
83.2 | 61.4 | 70.7
72.7 | 76.1
79.4 | 76.4
79.0 | 66.5
70.0 | 62. 7
66. 6 | 66.8 | 65. 9
68. 4 | 63.0 | | 17
18 | 65. 2
60. 2 | 41.8 | 59.0
54.9 | 62. 4
59. 4 | 64. 2
56. 5 | 52. 5
50. 8 | 52.1
51.9 | 53.3
54.4 | 55.0
53.8 | 49.0
49.6 | 17
18 | 70.0
72.6 | 60.6 | 65.1
68.2 | 67.0
70.1 | 65.8
71.5 | 63.0 | 62.9 | 63.2
64.8 | 63.4 | 60.5 | | 19
20 | 62. 2
56. 0 | 48.0
46.6 | 50.3
49.4 | 54.4
51.3 | 61.8
50.6 | 56.0
49.8 | 48.0
46.8 | 51.6
47.8 | 55.5
48.0 | 52. 5
47. 5 | 19
20 | 77.0
74.8 | 59.7
56.4 | 67.8 | 75. 2
69. 0 | 66.6
71.0 | 59.7
60.5 | 63.8
56.0 | 66.7 | 62.9 | 58.1 | | 21
22 | 55.7
62.7 | 47.8
48.4 | 50.3
50.8 | 53.0
57.0 | 53.8
62.0 | 51.8
49.3 | 47.5
48.9 | 50.5
52.5 | 51.0
54.0 | 50.5
48.0 | 21
22 | 74.5
78.5 | 57.5
61.8 | 68.3 | 69. 2
75. 8 | 71.9
75.2 | 67.8
65.2 | 62.2 | 61.4 | 62.9 | 62.8 | | 23
24 | 62. 2
69. 7 | 45.4
47.0 | 50.3
62.1 | 54. 2
67. 0 | 60.0
69.0 | 55.8
58.0 | 48.5
55.5 | 51.6
56.4 | 56. 8
58. 2 | 53.6
54.0 | 23
24 | 78.9
78.0 | 56.7 | 69.5 | 77.4 | 75.8 | 66.0 | 61.9 | 65.7 | 64.9 | 59.5
61.2 | | 25
26 | 68. 4
75. 3 | 52.9
52.0 | 62.6
69.6 | 66.4
72.1 | 67.0
73.0 | 57.0
59.3 | 55.6
62.5 | 57.7
62.8 | 57.4
62.8 | 54.0
55.5 | 25
26 | 86.6 | 58.4 | 72.0
75.3 | 79.9
79.6 | 86.3
85.4 | 73. 2
73. 4 | 61.8 | 66.6 | 70.3 | 68.2 | | 27
28 | 70.8
74.7 | 50.9
47.7 | 60.3
68.6 | 67.6
74.0 | 69.9
73.5 | 59.4
58.8 | 55.1
59.4 | 59.3
59.5 | 59.1
61.0 | 55.8
54.8 | 27
28 | 84.9
90.2 | 62.8 | 79.0
80.2 | 79.1
87.0 | 82.9
82.9 | 69.4
77.0 | 70.8
72.4 | 68.9
73.4 | 71.2 | 65.6 | | 29
30 | 85. 1
85. 7 | 53.6
58.5 | 76. 2
77. 6 | 83.4
83.0 | 84.5
83.6 | 71.0
67.8 | 65.5
66.9 | 68.1
67.2 | 68. 8
68. 6 | 64.5 | 29
30 | 82.4
72.0 | 67.2 | 73.9
67.5 | 77.3
67.3 | 80.6
70.8 | 71.6
62.5 | 67.3
64.2 | 67.5 | 68.0
65.1 | 59.8 | | 31
Means | 87. 8
67. 6 | 55.8
48.2 | 76.8
59.8 | 63.7 | 65.6 | 69. 5
55. 6 | 54.2 | 67.6
55.8 | 56.8 | 52. 1 | 31
Means | 75.4 | 57.6 | 66.6 | 72.3 | 74.6 | 63.9 | 62.1 | 63.2 | 63.3 | 59.4 | | | | A | | | JUNE | | | | | | | | | | | AUGUST | | | | | | | 1 | 87.9 | 59.1 | 79.8 | 85.5 | 87.4 | 75.2 | 68.8 | 70.1 | 70.7 | 66.8 | 1 | 77.0 | 57. 2
62. 4 | 70.3
70.7 | 76.6
71.0 | 75.0
65.0 | 64.0
64.6 | 62.3
60.9 | 64.9
61.7 | 64.2
61.0 | 60.5
62.6 | | 3 | 90.1 | 65.3 | 82.9
84.4 | 87.6
91.4 | 89.6
92.4 | 74.0
70.7 | 70.4 | 69.9
70.3 | 70.4 | 66.5
62.7 | 3 | 73.0
79.8 | 60.2 | 71.3 | 76.6
74.3 | 79.6
75.3 | 64.3
64.0 | 65. 2
64. 7 | 62.6
65.3 | 64.8 | 58.7
58.7 | | 5 | 75.8
64.4 | 50.9 | 73.0
60.5 | 74.0
62.2 | 72.0
55.3 | 62. 2
50. 9 | 64.6
55.5 | 63.5
52.9 | 60. 2
52. 4 | 56. 2
48. 3 | 5 | 78.3
70.0
73.8 | 57.9
59.2
57.6 | 60.9
64.7 | 61.8 | 69.6 | 61.8 | 57. 9
60. 4 | 59.5
60.7 | 61.9 | 58.3 | | 7 | 61. 9 | 45.8 | 51.3 | 53.8 | 61.4 | 54.3 | 49.3
52.9 | 51.6
60.0 | 52. 2
58. 3 | 51.1 | 6
7 | 71.0 | 55.9 | 62.7 | 67.6 | 70.2
75.4 | 59.0
62.0 | 55.5
55.7 | 56.6
59.2 | 57.3
61.4 | 53.0 | | 9 | 66.8 | 48.4
51.2 | 59.0
59.5 | 64.0
64.0 | 58.8
64.9 | 54.8
58.3 | 52.5
52.4 | 55.7
55.3
56.0 | 55.0
54.7 | 51.6
51.8
52.6 | 8
9
10 | 75.7
70.0 | 46.8
52.0
53.6 | 64.5
68.7
63.9 | 73.0 | 74.0
68.8 | 61.0 | 60.3
57.9 | 61.5 | 60.4
59.8 | 56.7 | | 10
11 | 73.6
72.9 | 46. 9
46. 5 | 62.0
68.5 | 69. 2
72. 2 | 73.5 | 58.6
57.6
50.0 | 51.0
58.3 | 60.5 | 59.3
60.3
50.5 | 55. 6
45. 3 | 10
11
12 | 75.6
77.8 | 54.2 | 64.6 | 67.7 | 74.7 | 63.0 | 58.6
58.7 | 60.4 | 63.5 | 59.8 | | 12 | 62.6 | 50.0
44.7 | 57.1
56.5 | 61.5 | 61, 2
59, 5 | 51.3 | 50.0
49.1 | 51.4
54.5 | 50.8
51.6 | 47.8
51.9 | 13
14 | 80.8
82.2 | 54.2 | 70.8
64.4 | 79.0
77.0 | 79.6
81.5 | 65.0
67.2 | 64.8 | 65.0
65.8 | 64.4
65.0 | 59.0
63.2 | | 14
15 | 61.0 | 48.0
50.6 | 57.3
58.6 | 56. 2
54. 4 | 52.6
56.0 | 53.4
54.4 | 54.5
54.0 | 50.7 | 50.4 | 49.4 | 15
16 | 88. 0
89. 7 | 59.4
60.2 | 71.5 | 83. 4
86. 3 | 86.7
89.6 | 69.3
71.0 | 65.4
65.5 | 68. 6
70. 4 | 69.4
71.6 | 62.5 | | 16
17 | 67.8
77.7 | 44.5
54.2 | 60.7
70.6 | 63.9
75.8 | 60.6
77.3 | 58.0
65.0 | 54.3
62.1 | 55.3
63.5 | 55.6
64.1 | 60.0 | 17
18 | 88.4
88.3 | 62.4 | 72.5
74.6 | 84. 2
84. 0 | 88.4
87.2 | 72.0
72.4 | 65.3
66.4 | 70.0
68.5 | 71.4 | 64.0 | | 18
19 | 68.6
70.2 | 55.7
53.9 | 66.8 | 66.5 | 65. 2
67. 4 | 60.8
58.2 | 56.9 | 64.0
57.9 | 62.5
58.4 | 59.3
53.9 | 19 | 81.3 | 62.8 | 74.5
67.6 | 80.6 | 80.7
82.8 | 66.8 | 64.0 | 64.4 | 64.6
65.1 | 58.4 | | 20 21 | 63.5 | 53.7 | 61.0 | 63.2 | 61.6 | 59.5
60.0 | 57.8
57.5 | 59.7
57.9 | 58.9
57.3 | 58. 2
55. 0 | 20
21 | 83.3
80.1
77.8 | 62.4 | 70.5 | 80.0
76.6 | 74.1
75.3 | 69.0
66.2 | 64. 2
64. 1 | 62.5 | 61.4 | 60.5 | | 22 23 | 66.8 | 52.9
47.5 | 61.9 | 63. 2
66. 6 | 65. 2
65. 8 | 58.5
58.0 | 55.9
57.4 | 55.7
58.6 | 57.5
57.3 | 54.8
54.0
59.2 | 22
23
24 | 81. 2
78. 3 | 59.6 | 65.4
68.6 | 75.4
74.0 | 77.5 | 67.0
62.4 | 61.6 | 64. 4
61. 7 | 65.0
61.7 | 63.0 | | 24 25 | 78.3
78.2 | 47.0
59.3 | 70.2
66.4 | 75.3
74.0 | 77.4 | 65.0
61.4 | 57.9 | 60.6 | 61.3 | 56.0
69.0 | 25
26 | 79.3
78.6 | 57.7 | 67.6 | 75.6
74.3 | 77.6 | 64.2 | 60.9 | 63. 4
62. 8 | 63.8
63.6 | 60.0 | | 26
27 | 87.0
79.8 | 51.9
63.7 | 74.3 | 80.6
63.6 | 86.8
73.9 | 76.0
68.2 | 64.3
69.4 | 68.1
63.1 | 70.3
69.2 | 65.7 | 26
27
28 | 81.3
81.7 | 56. 9
58. 4 | 71.9 | 79.1 | 80.2
81.0 | 65.8 | 61.0 | 62.4
62.3 | 61.7 | 60.5 | | 28
29 | 75. 2
71. 9 | 62.3
59.3 | 69.8
64.0 | 72.7
66.8 | 72.5
71.1 | 69.0
62.4 | 58.4
59.0 | 67.5
59.4 | 69.0
60.6
58.2 | 65.8
56.4
58.2 | 28
29
30 | 77.0 | 57.7 | 67.2 | 74.7 | 76.0
70.8 | 61.5 | 61.2 | 62.9
59.9 | 63.9 | 58.0 | | 30 | 67.0 | 59.3 | 63.7 | 63.4 | 65.4 | 60.0 | 59.0 | 58.3 | JO. 2 | | 31 | 74.5 | 54.7 | 68.7 | 73.6 | 74.3 | 62.0 | 60.7 | 55.9 | 56.6 | 56.0 | | Means | 72.1 | 53.3 | 65.5 | 68.3 | 69.2 | 60.7 | 58.4 | 59.5 | 59.6 | 56.2 | Means | 78.8 | 57.7 | 68.3 | 75.4 | 77.3 | 64.8 | 61.5 | 63.0 | 63.5 | 59.9 | | | TABLE XXVI READINGS OF THE THERMOMETE (The readings of the maximum and min | | | | | | | | | | | | | | | | E ENCIng 21 ^h) | | | | | |-----------------|--|--------------|----------------|-------------------|-----------------|-----------------|----------------|-----------------|-------------------|-----------------|-----------------|--------------|----------------|------------------|-----------------|-----------------|----------------------------|----------------|-----------------|-------------------|-----------------| | Day | - | | | ermomet
the Gr | | | 11 | | ermomet
the Gr | | Day | | - • | Bulb Th
above | | | | Wet- | | ermomet
the Gr | - | | of the
Month | Maxi-
mum | Mini-
mum | 9 ^h | 12 ^h | 15 ^h | 21 ^h | 9 ^h | 12 ^h | 15 ^h | 21 ^h | of the
Month | Maxi-
mum | Mini-
mum | 9 ^h | 12 ^h | 15 ^h | 21 ^h | 9 ^h | 12 ^h | 15 ^h | 21 ^h | | | | | | SE | PTEMBE | R | | | | | | | | | N | OVEMBE | R | | | | | | 1 | 74.7 | 52.8 | 69.2 | 73.4 | 72.9 | 62.2 | 61.7 | 61.4 | 62.3 | 58.6 | 1 | 60.3 | 39.3 | 49.2 | 60.2 | 60.2 | 53.9 | 46.9 | 55.9 | 56.2 | 52.6 | | 3 | 73.6
76.8 | 55.1
48.9 | 65.8
62.3 | 73.6
73.9 | 73.0
75.9 | 60.0
63.7 | 60.3
58.5 | 60.6 |
61.5
60.4 | 57.0
59.0 | 2
3 | 57.0
60.6 | 51.6
45.2 | 55.7
51.2 | 57.0
57.3 | 54.8
54.2 | 52.8
49.0 | 53.5
47.0 | 52.7
49.5 | 50.4
47.8 | 50.0
45.6 | | 4 5 | 79.5
80.7 | 54.6
51.2 | 63.4
63.8 | 75.2
76.1 | 75.3
79.9 | 64.0
65.0 | 58.9
58.5 | 63.4 | 62.9
62.5 | 59.5
57.7 | 5 | 54.6 | 44.0 | 49.0
52.0 | 52.0
54.9 | 54.6 | 54.3
44.0 | 46.4
48.5 | 49.1
48.6 | 52.6
47.5 | 53.0
42.0 | | 6 | 75.6
73.2 | 55.8
52.4 | 63.4 | 70.3
68.2 | 75.6
68.5 | 61.0
63.4 | 55.6
60.4 | 57.0
60.7 | 60.0
61.7 | 54.5
61.8 | 6
7 | 44.9 | 34.6
34.0 | 38.9
44.0 | 42.3
53.0 | 44.9
53.4 | 38.8
50.2 | 38.7
42.9 | 41.6
49.0 | 44.6
47.7 | 38.8
48.9 | | 8 | 73.4 | 61.0 | 63.6 | 70.8 | 70.3 | 61.0 | 61.3 | 63.7 | 61.3 | 52.4 | 8 | 61.9 | 46.8 | 47.3 | 56.6 | 60.6 | 49.6 | 46.4 | 51.5 | 52.8 | 48.1 | | 9
10 | 72.7
78.8 | 45.8
57.5 | 63.6
67.3 | 67.3
76.3 | 72.3
78.2 | 61.8
61.2 | 55.6
60.8 | 56.8
63.5 | 60.5
64.7 | 57.8
57.4 | 9
10 | 60.0
58.2 | 49.6
49.0 | 56.9
52.0 | 60.0
54.4 | 57.4
54.0 | 52.0
49.0 | 55.7
47.2 | 57.9
48.3 | 52.2
47.9 | 50.4
46.6 | | 11
12 | 83.7
69.4 | 50.3 | 69.8
66.6 | 81.9
68.6 | 83.0
66.0 | 66.0
62.0 | 62.3
64.9 | 67.2
65.4 | 67.7
64.4 | 61.4
59.5 | 11
12 | 60.8 | 47.7
54.6 | 58.6
59.6 | 60.3
59.6 | 59.8
59.6 | 56.7
54.8 | 55.3
56.4 | 55.3
57.4 | 53.4
56.4 | 52.5
52.0 | | 13 | 73.5 | 55.0 | 69.3 | 71.0 | 63.5 | 55.0 | 63.7 | 63.2 | 58.0 | 54.0 | 13 | 54.8 | 45.3 | 47.0 | 50.0 | 49.7 | 46.6 | 42.1 | 43.6 | 44.2
43.2 | 43.2 | | 14
15 | 70.8
81.7 | 50.7
58.5 | 61.0 | 64.7
76.7 | 70.3
80.0 | 62.0
69.7 | 58.0
62.8 | 62.0
65.7 | 62.8
67.6 | 59.4
66.9 | 14
15 | 46.6 | 38.5
37.1 | 42.0
44.3 | 45.3
43.0 | 45.8
42.0 | 42.0
37.1 | 39.7
41.4 | 42.3
37.5 | 36.2 | 41.5
34.0 | | 16
17 | 82.3
73.0 | 60.3
47.5 | 77.9
63.4 | 75.8
68.7 | 74.0
69.8 | 60.3
58.0 | 65.7
56.1 | 65.6
57.3 | 63.3
57.8 | 56.6
54.7 | 16
17 | 41.7 | 31.6 | 34.6
33.9 | 40.5
38.9 | 41.0
38.9 | 34.0
31.3 | 33.0
32.4 | 37.4
35.4 | 36.7
35.2 | 32.5
30.8 | | 18 | 65.2 | 55.6 | 58. 2 | 64.1 | 65.0
71.8 | 64.6
66.4 | 56.3
64.1 | 61.9 | 63.5
66.9 | 63.3
64.4 | 18
19 | 37.7
42.4 | 30.7
35.7 | 34.6
39.6 | 36.3
41.4 | 37.3
42.1 | 35.8
38.8 | 33.8
39.1 | 34.7
40.5 | 35.0
40.9 | 33.2
38.0 | | 19
20 | 75.2
72.3 | 62.8
57.8 | 65.2
64.7 | 68.0
69.2 | 69.0 | 57.8 | 62.6 | 64.5 | 62.5 | 57.0 | 20 | 59.5 | 36.8 | 54.0 | 58.8 | 59.2 | 59.4 | 52.8 | 56.1 | 57.4 | 57.3 | | 21
22 | 66.6
68.7 | 54.3
45.3 | 62.4
58.0 | 63.1
66.9 | 66.0
67.2 | 56.0
56.3 | 60.6
52.7 | 56.9
56.1 | 54.6
57.0 | 49.8
55.0 | 21
22 | 60.8 | 58.0
58.3 | 58.8
60.0 | 60.4
60.6 | 59.7
58.8 | 59.2
60.3 | 56.8
57.7 | 57.5
57.4 | 57.1
56.3 | 57.2
57.3 | | 23
24 | 60.8
58.1 | 51.2
43.7 | 54.0
52.0 | 56.0
56.7 | 58.4
56.5 | 51.2
49.8 | 48.7
46.0 | 49.4
48.8 | 49.6
48.5 | 46.5
46.4 | 23
24 | 61.5
49.3 | 49.3
39.5 | 57.8
41.9 | 60.6
47.3 | 58.9
48.3 | 49.3
42.8 | 55.3
38.9 | 55.8
42.0 | 53.6
42.3 | 44.8 | | 25 | 64.8 | 40.1 | 53.1 | 61.9 | 61.9 | 54.8 | 49.3 | 52.8 | 52.7 | 51.8 | 25 | 43.8 | 37.6 | 40.9 | 43.4 | 42.5 | 37.6 | 37.4 | 37.1 | 36.0 | 33.4 | | 26
27 | 66.6 | 51.4
48.6 | 60.6
51.5 | 64.2
63.4 | 66.1
64.9 | 54.4
53.4 | 56.9
50.0 | 55.5 | 55.7
56.9 | 51.1
50.9 | 26
27 | 38.7
39.3 | 31.2
27.0 | 33.6
30.0 | 36.9
34.3 | 38.5
39.0 | 31. 2
34. 8 | 29.8
29.7 | 31.7
32.1 | 33.0
36.9 | 29.5
34.0 | | 28
29 | 63.4
65.0 | 51.2
52.0 | 56.7
58.8 | 61.0
61.9 | 62.6
60.1 | 58.0
52.0 | 54.2
57.3 | 56.7
59.1 | 58.1
54.5 | 55.7
46.2 | 28
29 | 40.9
39.0 | 30. 1
34. 5 | 32.9
37.1 | 39.6
39.0 | 40.3
38.5 | 35.5
36.3 | 31.5
35.7 | 37.1
37.3 | 38.3
36.8 | 35.0
35.3 | | 30 | 58.9 | 43.4 | 49.9 | 57.2 | 57.3 | 46.0 | 44.5 | 46.9 | 47.0 | 42.5 | 30 | 36.3 | 26.5 | 32.4 | 34.0 | 33.6 | 26.5 | 31.8 | 32.7 | 32.6 | 26.1 | | Means | 71.5 | 52.6 | 62.5 | 68.2 | 69.2 | 59.2 | 57.6 | 59.6 | 59.6 | 55.6 | Means | 50.9 | 40.6 | 45.7 | 49.3 | 49.4 | 44.8 | 43.5 | 45.5 | 45.4 | 42.8 | | | 0 | | ۰٦ | 0 | CTOBER | 0 | | | 0 | 0 | | | | | D | ECEMBE | R | 0 | 0 | 0 | 0 | | 1 2 | 62.5
65.0 | 36.0
40.3 | 49.2
54.3 | 58.8
63.0 | 62.5
63.5 | 49.7
56.5 | 45.0
49.8 | 50.0
56.3 | 51.9
57.0 | 47.3
53.3 | . 1 | 32.8
40.8 | 21.0
29.5 | 24.2
31.6 | 30.3
38.3 | 31.6
39.7 | 29.6
35.3 | 24.0
30.9 | 29.4
34.1 | 31.2
36.7 | 29.2
33.5 | | 3 | 61.7 | 45.4 | 56.3 | 60.6 | 60.0 | 50.6 | 50.6 | 51.3 | 50.0 | 47.4 | 3 | 39.2 | 33.4 | 36.9 | 38.3 | 38.8 | 37.5 | 35.8 | 37.0 | 37.8 | 37.1 | | 5 | 67.2
67.8 | 37.7
43.2 | 49.6
46.1 | 63.0
61.6 | 66.5 | 51.4
48.2 | 47.8
45.9 | 54.0
55.0 | 55.0
57.3 | 50.0
47.0 | 4
5 | 39.6
49.0 | 34.1
33.7 | 38.4
47.5 | 39.1
48.5 | 38.6
47.6 | 34.1
45.0 | 38.1
45.5 | 38.6
45.7 | 37.6
43.1 | 33.5
41.8 | | 6
7 | 71.2
69.3 | 41.2 | 52. 2
56. 9 | 67.3
67.0 | 70.8
68.5 | 55.0
58.0 | 49. 4
53. 4 | 56.6
58.3 | 59.0
61.5 | 52.7
56.7 | 6
7 | 45.7
44.7 | 39.7
37.7 | 44.1 | 43.5
44.0 | 44.0
43.0 | 42.0
38.7 | 43.4
42.7 | 42.5 | 43.3 | 41.5
38.2 | | 8 | 67.3 | 53.0
46.2 | 59.4
53.6 | 61.8 | 65.2 | 58.5 | 57.4 | 58.9 | 60.0
56.9 | 56.5 | 8 | 46.0 | 36. 4
40. 6 | 41.8
43.0 | 44.9 | 45.6 | 42.5
43.0 | 40.6
41.2 | 42.2
43.1 | 42.3
42.9 | 41.2 | | 9
10 | 68.0
69.0 | 53.3 | 61.3 | 64.3
67.7 | 65.4
67.1 | 58.0
58.0 | 52.3
56.9 | 55.7
59.1 | 60.2 | 56.0
56.5 | 10 | 45.5 | 36.5 | 40.4 | 45.5 | 44.4
42.6 | 36.5 | 39.2 | 39.0 | 38.5 | 34.5 | | 11
12 | 66.8
71.8 | 53.7 | 60.4
58.4 | 65.8
67.5 | 66.5
71.6 | 55.2
53.6 | 58.4
56.4 | 59.6 | 59.5
61.8 | 53.9
52.6 | 11
12 | 41.6
51.2 | 27.7
41.6 | 29.6
46.3 | 37.8
48.3 | 41.0
51.0 | 41.6
50.7 | 29.4
44.8 | 32.9
47.6 | 37.9
49.5 | 39.0
49.2 | | 13
14 | 69.6
57.8 | 48.5
46.8 | 53.4
55.3 | 68.5
55.2 | 65.3
54.0 | 57.8
46.8 | 52.9 | 61.0 | 59.5
51.4 | 55.1
44.8 | 13
14 | 50.7
45.3 | 45.3
40.0 | 48.1
42.8 | 47.8
43.0 | 47.5
42.4 | 45.3
40.0 | 46.3
41.1 | 46.0
39.8 | 46.5
39.0 | 43.8 | | 15 | 64.4 | 37.7 | 52.3 | 61.3 | 60.7 | 56.3 | 54. 4
49. 0 | 53.6
54.1 | 53.5 | 53.1 | 15 | 43.5 | 37.0 | 41.0 | 43.2 | 42.8 | 43.5 | 39.9 | 40.9 | 40.5 | 41.0 | | 16
17 | 59.9
59.7 | 52.0
47.5 | 56.6
51.4 | 59.5
55.2 | 59.9
58.4 | 52.0
55.7 | 52.8
50.4 | 54.4
51.5 | 54.3
52.7 | 50.7
51.4 | 16
17 | 45.9
45.9 | 43.1 | 45.0
44.2 | 45.7
45.4 | 45.4
45.4 | 43.6 | 42.7
42.7 | 43.7 | 42.9 | 42.4 | | 18 | 57.0 | 47.7 | 50.5
48.4 | 54.3
56.5 | 57.0
54.7 | 47.7
46.6 | 46.5 | 48.1 | 50.3
47.6 | 45.2 | 18
19 | 45.0
47.0 | 39.7
39.9 | 44.5
43.4 | 44.2
44.1 | 41.7
45.1 | 39.9
46.2 | 43.5
40.7 | 43.3
39.7 | 41.2 | 39.8
44.8 | | 19
20 | 57.2
52.6 | 37.7
38.3 | 46.6 | 51.8 | 51.4 | 38.3 | 46.5 | 48. 4
46. 0 | 45.4 | 43.6
36.6 | 20 | 50.9 | 45.2 | 49.6 | 50.2 | 50.9 | 45.2 | 47.9 | 48.0 | 49.1 | 43.7 | | 21
22 | 58. 7
60. 2 | 29.3
44.1 | 40.0
56.5 | 54.3
56.4 | 55.4
60.2 | 46.0
52.4 | 37.5
54.9 | 47.0
54.2 | 49.9
54.7 | 44.5
50.9 | 21
22 | 49.5 | 40.3 | 42.6 | 48.0
49.3 | 49.0
49.8 | 47.6
45.7 | 41.3 | 45.4
44.8 | 45.0
45.3 | 43.2 | | 23 | 61.6 | 48.0
43.3 | 53.2
46.9 | 59.0
54.0 | 58.6
57.0 | 48.0
49.8 | 51.9
46.4 | 54.2
51.4 | 52.3
54.2 | 47.0
48.8 | 23
24 | 49.6
51.0 | 44.3
43.9 | 48.7
47.7 | 49.4
49.2 | 49.3
50.1 | 44.3
50.8 | 44.3
44.9 | 44.3
46.3 | 44.0
47.6 | 40.2 | | 24
25 | 57.6 | 47.7 | 50.9 | 56.5 | 55.7 | 47.7 | 48.5 | 51.0 | 50.2 | 45.2 | 25 | 52.0 | 42.7 | 49.2 | 50.6 | 45.5 | 43.0 | 46.9 | 47.1 | 44.0 | 41.2 | | 26
27 | 51.7 | 44.7 | 46.4 | 50.4
47.5 | 50.0
48.6 | 47.3
48.3 | 42.5 | 43.6
41.5 | 42.5
43.0 | 42.0
43.5 | 26
27 | 45.5
55.8 | 36.4
40.4 | 39.8
54.0 | 44.6
55.8 | 44.0
54.5 | 40.4
51.4 | 37.3
51.5 | 39.9
53.2 | 40.0
52.0 | 39.0
46.0 | | 28
29 | 50.4
49.4 | 45.3
41.2 | 47.9
44.9 | 49.9
47.4 | 48.8
48.0 | 45.3
41.2 | 43.4
42.1 | 43.4
43.4 | 43.7
43.0 | 41.5 | 28
29 | 51.4
42.2 | 42. 2
32. 3 | 46.6 | 47.5
39.2 | 47.7
39.5 | 42.2
36.0 | 43.0
30.3 | 43.3
34.2 | 43.6
35.7 | 38.6 | | 30 | 49.4
49.0
52.8 | 32.3 | 37.6 | 47.0 | 48.6
52.5 | 46.0
49.6 | 37.4
46.0 | 44.4 | 45.1 | 44.3 | 30
31 | 36.4
38.5 | 31.8 | 33.4 | 34.3 | 34.5 | 31.8 | 31.7 | 33.6
32.3 | 33.3
35.0 | 30.5 | | 31 | | 45.3 | 48.3 | 51.3 | 12. D. I | 47.01 | 40.0 | 48.1 | 48.2 | 46.3 | . 41 | . 48 5 | 28.9 | 30.6 | 36.3 | 37.6 | 36.4 | | | | 35.7 | Table XXVII. - Readings of thermometers at $9^{\rm h}$ on the revolving open stand (formerly called 'ordinary') in the new site in the christie enclosure | | | | , | | | | | | | | | | |-------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------| | 1947 | January | February | March | April | May | June | July | August | September | October | November | December | | Day | Max. Min. | | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | | 1 | 45.4 31.7 | 35.7 24.0 | 33.9 22.8 | 50.7 37.9 | 50.4 39.7 | 90.6 57.8 | 68.7 54.1 | 78.4
55.4 | 78.6 51.2 | 58.9 35.6 | 53.0 38.4 | 34.6 19.0 | | 2 | 44.9 32.9 | 34.0 26.5 | 36.7 23.0 | 56.9 40.0 | 53.7 39.5 | 90.2 63.8 | 68.8 56.5 | 80.0 61.5 | 78.5 53.4 | 63.0 39.5 | 61.0 48.5 | 33.0 23.8 | | 3 | 41.8 28.7 | 35.0 33.1 | 40.2 20.5 | 44.1 35.9 | 59.0 41.1 | 92.7 61.5 | 75.8 55.7 | 75.6 58.8 | 77.0 47.6 | 67.2 42.8 | 57.2 44.6 | 41.1 31.0 | | 4 | 44.7 32.9 | 38.3 34.0 | 38.9 29.3 | 48.2 39.2 | 67.6 48.9 | 95.7 58.6 | 74.4 54.9 | 81.8 57.3 | 78.8 52.8 | 63.4 36.2 | 60.4 43.2 | 39.7 36.5 | | 5 | 37.8 28.9 | 38.8 27.8 | 35.2 29.6 | 46.9 35.5 | 59.2 39.8 | 77.1 54.6 | 78.2 56.0 | 79.0 58.5 | 80.5 49.9 | 69.0 42.2 | 54.7 49.4 | 47.6 32.6 | | 6 | 36.9 26.3 | 32.2 27.4 | 32.8 28.9 | 52.0 45.8 | 65.0 44.9 | 66.9 45.5 | 66.7 47.9 | 72.3 57.1 | 81.7 54.2 | 69.0 40.7 | 55.9 34.3 | 49.8 40.2 | | 7 | 32.6 24.9 | 29.6 27.1 | 32.9 19.7 | 54.4 44.1 | 69.2 45.9 | 63.3 49.9 | 67.7 54.4 | 76.6 54.4 | 77.8 50.2 | 71.1 46.8 | 44.9 33.9 | 46.0 38.9 | | 8 | 35.3 32.2 | 30.4 28.0 | 37.0 23.2 | 61.6 45.6 | 74.8 50.6 | 70.8 48.1 | 71.2 49.8 | 74.2 45.5 | 74.2 60.5 | 70.7.52.6 | 55.7 44.0 | 45.8 36.3 | | 9 | 46.6 34.2 | 31.3 28.0 | 41.1 30.6 | 53.2 34.9 | 72.5 49.0 | 67.8 50.9 | 66.3 50.6 | 79.9 50.0 | 75.7 45.4 | 69.4 44.6 | 61.7 47.2 | 46.1 40.2 | | 10 | 44.9 29.0 | 36.0 29.5 | 48.9 32.8 | 50.7 29.0 | 76.9 53.5 | 68.7 45.2 | 70.3 51.6 | 79.0 51.2 | 73.8 56.9 | 68.2 52.4 | 61.0 51.0 | 45.9 36.2 | | 11 | 45.4 32.3 | 35.4 28.4 | 44.9 32.8 | 60.0 32.9 | 64.0 42.6 | 75.2 45.9 | 64.4 51.7 | 73.7 52.0 | 79.2 49.6 | 69.6 53.0 | 58.7 47.5 | 45.7 27.3 | | 12 | 50.1 38.8 | 29.3 24.4 | 35.1 30.5 | 63.0 35.9 | 72.2 51.4 | 75.6 49.9 | 68.0 48.2 | 79.3 52.0 | 83.8 62.5 | 67.8 52.0 | 60.8 56.3 | 46.0 28.0 | | 13 | 49.2 40.6 | 27.3 24.9 | 48.0 31.3 | 63.3 35.0 | 70.3 50.9 | 66.7 43.2 | 73.4 55.7 | 81.8 52.0 | 70.7 57.4 | 72.3 47.6 | 61.3 44.5 | 51.1 45.7 | | 14 | 46.8 36.5 | 30.0 26.5 | 53.4 32.8 | 65.8 40.9 | 83.7 52.8 | 66.0 47.9 | 79.9 59.0 | 83.4 56.2 | 75.6 49.9 | 70.7 50.9 | 52.4 37.9 | 48.3 41.5 | | 15 | 54.0 45.9 | 32.4 29.1 | 35.7 24.5 | 69.0 51.7 | 82.2 46.1 | 64.2 49.9 | 83.8 60.0 | 85.0 57.2 | 71.9 57.9 | 55.8 36.9 | 46.5 40.8 | 43.4 35.2 | | 16 | 51.9 43.5 | 31.8 26.6 | 47.9 31.0 | 63.6 41.6 | 66.3 45.4 | 64.7 43.8 | 59.9 | 90.2 57.8 | 82.3 63.5 | 64.7 52.4 | 44.3 30.9 | 45.3 40.4 | | 17 | 53.9 43.2 | 29.3 25.6 | 57.7 38.5 | 73.0 42.4 | 63.8 40.5 | 72.6 53.8 | 85.3 60.0 | 92.3 59.7 | 82.6 46.7 | 60.2 46.0 | 42.2 31.1 | 46.2 43.2 | | 18 | 48.7 34.8 | 28.4 25.6 | 57.6 41.6 | 66.0 41.0 | 68.3 43.3 | 80.3 54.2 | 70.3 61.8 | 92.2 60.3 | 73.4 54.8 | 61.3 49.4 | 40.7 30.2 | 45.9 43.4 | | 19 | 47.8 34.3 | 29.7 25.0 | 56.3 44.8 | 63.8 42.6 | 61.9 47.8 | 69.3 53.1 | 75.3 59.1 | 91.9 61.2 | 66.7 58.2 | 58.1 36.2 | 39.8 34.2 | 45.0 39.5 | | 20 | 38.8 32.6 | 30.6 26.8 | 49.0 42.6 | 59.4 40.8 | 64.8 46.4 | 72.3 53.1 | 78.7 56.2 | 85.0 56.2 | 77.6 60.3 | 58.6 40.0 | 54.3 35.3 | 49.3 42.1 | | 21 | 40.8 26.4 | 31.5 26.5 | 53.8 44.9 | 58.0 45.5 | 52.7 47.5 | 67.3 52.6 | 75.7 56.9 | 86.6 61.5 | 74.0 53.6 | 54.3 28.6 | 59.9 53.8 | 51.2 39.2 | | 22 | 39.0 26.1 | 29.6 23.8 | 54.3 42.0 | 57.7 45.5 | 56.2 48.5 | 75.0 51.9 | 77.0 60.9 | 82.8 60.9 | 68.0 44.3 | 58.1 39.7 | 61.3 57.8 | 49.8 42.0 | | 23 | 38.1 27.6 | 29.8 21.0 | 55.7 45.1 | 60.2 41.8 | 67.3 44.9 | 69.9 46.8 | 80.6 55.8 | 81.2 58.9 | 69.2 50.8 | 60.9 47.3 | 61.7 55.9 | 50.8 44.5 | | 24 | 34.2 25.5 | 32.9 9.9 | 54.3 39.3 | 54.6 45.2 | 65.0 46.3 | 72.2 46.4 | 80.7 51.9 | 84.8 53.5 | 61.7 42.3 | 62.7 41.1 | 61.6 38.7 | 50.0 44.0 | | 25 | 32.6 20.9 | 26.5 9.3 | 46.2 31.8 | 61.0 40.8 | 72.3 51.9 | 80.8 58.8 | 80.3 57.3 | 81.7 57.2 | 60.3 38.0 | 59.3 45.6 | 49.0 38.2 | 52.0 46.6 | | 26 | 32.3 25.7 | 37.3 16.9 | 53.5 38.4 | 68.8 44.9 | 72.0 51.3 | 80.9 51.0 | 87.9 63.0 | 82.7 58.2 | 66.4 49.8 | 59.7 43.4 | 43.8 30.6 | 51.3 35.9 | | 27 | 29.6 25.5 | 41.3 29.8 | 53.6 41.5 | 66.2 35.6 | 77.3 50.1 | 89.7 65.8 | 89.2 61.1 | 82.8 54.1 | 67.1 47.0 | 52.8 45.1 | 38.7 26.2 | 54.0 38.9 | | 28 | 29.4 25.5 | 37.9 30.9 | 55.3 45.3 | 63.8 47.8 | 73.7 45.9 | 80.7 60.4 | 88.3 63.5 | 85.2 56.0 | 67.9 51.0 | 51.6 45.6 | 39.7 29.6 | 55.8 45.3 | | 29 | 29.7 9.8 | | 58.7 45.8 | 63.2 40.6 | 79.4 51.0 | 78.1 59.4 | 91.5 65.5 | 85.6 56.7 | 64.0 55.9 | 52.2 41.9 | 41.3 32.8 | 48. 2 31. 7 | | 30 | 26.6 13.9 | | 55.8 45.8 | 64.8 41.7 | 88.4 57.4 | 74.7 58.7 | 85.3 62.2 | 80.2 53.1 | 65.8 41.8 | 50.5 30.4 | 39.6 29.4 | 40.8 31.2 | | 31 | 30.3 22.5 | | 53.3 41.5 | | 88.8 53.9 | | 73.6 59.0 | 74.7 52.7 | | 49.8 37.7 | | 36.3 28.0 | | | | | | | | | | | | | | | | Means | 40.6 30.1 | 32.6 25.6 | 47.0 34.6 | 59.5 40.7 | 69.0 47.4 | 75.3 52.7 | 76.6 56.8 | 81.9 56.0 | 73.5 51.9 | 62.0 43.4 | 52.1 40.5 | 46.3 37.0 | | | | | | | | | | | | | | | | MADIE | 15 15 15 T T T | AMOTTATO | ΔE | DATM | COLLEGMED | T 3.7 | DAOII | MANIMIT | ΛĦ | MITTE. | TOTAL D | 10477 | |-------|----------------|-------------|----|-------|-----------|-------|-------|---------|----|--------|---------|-------| | INDPD | VV A I I I + |
ALIOUNI | UF | UNTIN | COLLECTED | T 1/4 | PACU | TONIA | υr | Tur | IDAL | 104/ | | the Grour | Monthly Amount of Rain collected in each Gauge | | | | | | | | | | | | | | Height of
Receiving
Surface | | |---|--|---------|----------|--------|-------|-------|--------|-------|--------|-----------|---------|----------|----------|---------|-----------------------------------|----------------------------| | partly sunk below
the Christie Enclu | Number
of
Gauge | January | February | March | April | May | June | July | August | September | October | November | December | Sums | Above
the
Ground | Above
Mean Sea
Level | | | | 1n. | in. ft.in. | ft. in. | | s pa | 6 | 1.632 | 1.569 | 5. 216 | 1.513 | 1.183 | 2.927 | 1.243 | 0.090 | 1.533 | 0.140 | 1.100 | 2. 150 | 20.296 | 0 5 | 149 6 | | Gauges
1n | 8 | 1.642 | 1.612 | 5. 187 | 1.481 | 1.152 | 2. 909 | 1.240 | 0.083 | 1.530 | 0.139 | 1.067 | 2, 097 | 20. 139 | 1 0 | 150 1 | | Numb | , 1 | 16 | 11 | 26 | 13 | 16 | 13 | 14 | 3 | 10 | 5 | 14 | 16 | 157 | | | TABLE XXIX. - MEAN HOURLY MEASURES OF THE HORIZONTAL MOVEMENT OF THE AIR, IN EACH MONTH, AND GREATEST HOURLY MEASURES, AS DERIVED FROM THE RECORDS OF ROBINSON'S ANEMOMETER.* | Hour
Ending | January | February | March | April | May | June | July | August | September | October | November | December | Mean
for the
Year | |--------------------------------|---------|----------|-------|-------|-------|-------|-------|--------|-----------|---------|----------|----------|-------------------------| | h | miles | 1 | 10.6 | 9.9 | 11.4 | 11.0 | 6.1 | 7.4 | 6.6 | 6.9 | 7.5 | 5.9 | 10.6 | 10.5 | 8.7 | | 2 | 10.3 | 9.9 | 11.4 | 11.9 | 6.5 | 6.9 | 6.6 | 6.9 | 7.4 | 6.1 | 10.6 | 10.4 | 8.7 | | 3 | 9.5 | 9.9 | 11.2 | 11.5 | 6.0 | 7.0 | 6.7 | 6.3 | 7.1 | 6.2 | 10.6 | 10.1 | 8.5 | | 4 | 9.3 | 10.4 | 11.3 | 10.9 | 6.5 | 6.6 | 6.5 | 6.1 | 7.1 | 6.1 | 11.3 | 10.6 | 8.6 | | 5 | 9.4 | 10.5 | 11.3 | 11.1 | 6.2 | 6.6 | 7.0 | 6.4 | 7.1 | 6.3 | 12.0 | 10.8 | 8.7 | | 6 | 10.0 | 10.7 | 11.0 | 11.4 | 6.0 | 6.9 | 7.0 | 6.9 | 7.5 | 6.6 | 11.8 | 10.6 | 8.9 | | 7 | 10.5 | 11.4 | 11.3 | 12.0 | 5.7 | 7.9 | 7.0 | 7.4 | 7.5 | 6.1 | 12.3 | 10.9 | 9.2 | | 8 | 10.5 | 11.1 | 11.7 | 13.1 | 6.3 | 8.5 | 7.9 | 6.8 | 8.0 | 6.5 | 12.0 | 11.2 | 9.5 | | 9 | 10.5 | 11.6 | 11.9 | 13.7 | 7.4 | 9.2 | 8.2 | 7.6 | 8.5 | 6.3 | 12.7 | 11.6 | 9.9 | | 10 | 11.0 | 10.8 | 11.9 | 15.0 | 8.4 | 10.0 | 8.3 | 8.1 | 9.2 | 7.2 | 12.3 | 11.3 | 10.3 | | 11 | 11.2 | 11.3 | 13.2 | 15.8 | 9.2 | 10.5 | 9.1 | 9.1 | 10.1 | 8.5 | 13.0 | 11.7 | 11.1 | | 12 | 12.1 | 11.3 | 14.2 | 16.4 | 9.7 | 11.1 | 9.1 | 9.7 | 10.4 | 8.6 | 13.5 | 12.0 | 11.5 | | 13 | 11.9 | 11.9 | 14.5 | 16.5 | 9.0 | 11.5 | 9.4 | 10.2 | 10.2 | 9.8 | 14.1 | 12.5 | 11.8 | | 14 | 12.2 | 12.5 | 15.1 | 17.9 | 9.8 | 11.6 | 10.0 | 10.7 | 11.3 | 9.9 | 15.0 | 12.9 | 12.4 | | 15 | 12.5 | 12.6 | 14.7 | 18.5 | 10.4 | 11.7 | 10.5 | 11.1 | 11.8 | 9.5 | 14.5 | 12.6 | 12.5 | | 16 | 12.2 | 12.3 | 15.0 | 17.5 | 10.0 | 10.8 | 10.5 | 10.8 | 11.1 | 9.2 | 13.6 | 11.7 | 12.1 | | 17 | 11.7 | 12.6 | 14.5 | 17.4 | 9.8 | 11.2 | 10.2 | 10.6 | 10.3 | 8.7 | 12.8 | 11.5 | 11.8 | | 18 | 11.9 | 12.0 | 14.2 | 16.8 | 9.5 | 10.8 | 10.0 | 9.7 | 10.1 | 8.7 | 12.3 | 11.5 | 11.5 | | 19 | 12.4 | 10.7 | 12.4 | 15.3 | 8.5 | 10.6 | 9. 2 | 9.1 | 8.8 | 8.2 | 12.1 | 11.3 | 10.7 | | 20 | 12.4 | 11.5 | 12.3 | 14.5 | 8.1 | 9.4 | 8.7 | 7.9 | 8.9 | 7.8 | 11.5 | 10.8 | 10.3 | | 21 | 11.9 | 10.6 | 12.1 | 13.8 | 8.0 | 8.6 | 8.0 | 7.0 | 8.4 | 7.5 | 11.1 | 11.5 | 9.9 | | 22 | 11.9 | 10.6 | 12.1 | 13.2 | 7.6 | 8.1 | 7.7 | 7.1 | 8.2 | 7.3 | 11.4 | 11.6 | 9.7 | | 23 | 10.9 | 10.9 | 11.7 | 13.1 | 7.2 | 7.6 | 7.4 | 6.8 | 8.0 | 6.8 | 11.0 | 11.0 | 9.4 | | 24 | 10.3 | 10.4 | 11.0 | 12.1 | 6.6 | 7.8 | 7.0 | 7.1 | 7.0 | 6.5 | 10.5 | 10.2 | 8.9 | | Means | 11.1 | 11.1 | 12.6 | 14.2 | 7.9 | 9.1 | 8.3 | 8.2 | 8.8 | 7.5 | 12.2 | 11.3 | 10.2 | | Greatest
Hourly
Measures | 40 | 26 | 52 | 43 | 31 | 27 | 26 | 19 | 25 | 30 | 35 | 33 | •• | ^{*} The measures are derived from the motion of the cups by the formula V = 2.7v where v is the hourly motion of the cups in miles. See Introduction p. xvii.